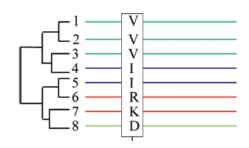

CISC 636 Computational Biology & Bioinformatics (Fall 2016)

Multiple Sequence Alignment

- Scoring
- Dynamic Programming algorithms
- Heuristic algorithms
 - -CLUSTAL W

Courtesy of jalview


Motivations

- Collective statistic
- Protein families
- Identification and representation of conserved sequence features (motifs)
- Deduction of evolutionary history (Phylogeny)

Type of approaches

- Multidimensional dynamic programming
- Progressive alignment
 - Clustal W
- Iterative pairwise
- Probabilistic (HMMs)

Scoring a multiple alignment

- Ideally, should take into account
 - Some positions are more conserved than others position specific scoring. (columns)
 - Sequences are not independent, they evolved as depicted by phylogenetic trees. (rows)
- In practice, each position (column) is scored independently

 $S(m) = G + \sum_{i} S(m_i)$ where m_i stands for column i of the multiple alignment m, G is a function for scoring the gaps.

• Note: Hidden Markov models take into account position correlation, but just locally.

Column score

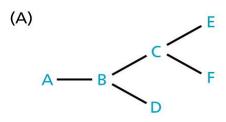
- Ideally, a column with three rows should scored as $S(a, b, c) = \log(p_{abc}/q_aq_bq_c) \tag{1}$

Sum of pairs :SP scores

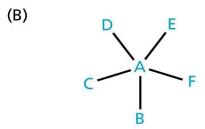
This means that the score in eq(1) is approximated as

$$S(a,b,c) = S(a,b) + S(a,c) + S(b,c) = log(p_{ab}/q_aq_b) + log(p_{ac}/q_aq_c) + log(p_{bc}/q_bq_c)$$
(2)

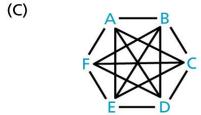
To apply this SP scores to every position *i* in MSA m, we have $S(m_i) = \sum_{k < 1} S(m_i^k, m_i^1),$


where m_i^k stands for residue at position i of sequence k. Scores S(a, b) come from a substitution scoring matrix, e.g., PAM.

Note: scoring gaps


$$s(a, -) = s(-, a) = -d$$
, $s(-, -) = 0$ (Once a gap, always a gap)

CISC636, F16, Lec8, Liao


Common ways to construct alignment score from pairwise scores.

$$score = S_{AB} + S_{BC} + S_{BD} + S_{CE} + S_{CF}$$

$$score = S_{AB} + S_{AC} + S_{AD} + S_{AE} + S_{AF}$$

score =
$$S_{AB} + S_{AC} + S_{AD} + S_{AE} + S_{AF}$$

+ $S_{BC} + S_{BD} + S_{BE} + S_{BF} + S_{CD}$
+ $S_{CE} + S_{CF} + S_{DE} + S_{DF} + S_{EF}$

This is the SP score used in the previous slide

CISC636, F16, Lec8, Liao

Example of SP scoring

F F I V

$$S = S(F,F) + S(F,F) + S(F,I) + S(F,V)$$

$$+ S(F,F) + S(F,I) + S(F,V)$$

$$+ S(F,I) + S(F,V)$$

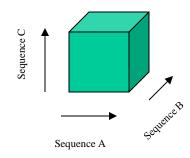
$$+ S(I,V)$$

$$= 8 + 8 + 0 - 1 + 8 + 0 - 1 + 0 - 1 + 4 = 25$$

F F I N

$$S = S(F,F) + S(F,F) + S(F,I) + S(F,N)$$

$$+ S(F,F) + S(F,I) + S(F,N)$$


$$+ S(F,I) + S(F,N) + S(I,N)$$

$$= 8 + 8 + 0 - 4 + 8 + 0 - 4 + 0 - 4 + 4 = 16$$

Note: Blosum 50 is used

Approach 1: Multidimensional dynamic programming

- Given the scoring scheme, multiple sequences can be aligned using the same dynamic programming procedure used for aligning two sequences
- For example, when aligning three sequences, the DP table becomes a cube. Time required to filled out the cube is L³ where L is the length of the sequences

- Thus, Aligning N sequences requires L^N time
 - NP complete problem (L. Wang and T. Jiang, 1994)
- An exact optimal alignment of multiple sequences has been considered as the Holy Grail in bioinformatics.

Basic procedure

- Determine pairwise distance between sequences
- Use a distance-based method to construct a guide tree
- Add sequences to the growing alignment following the order in the guide tree

Pros and cons

- Progressive alignments are fast
- Heuristic (greedy algorithm without backtracking) may get trapped at the local optimum
- Error propagation

- Distance-based guide tree
 - Distances may be obtained from
 - Pairwise alignment
 - Hybridization
 - Tree can be built by using
 - UPGMA (Unweighted Pair Group Method of Averages)
 - Neighbor joining

UPGMA

- Fast and easy
- Robust to sequence errors
- Assumption of molecular clock, i.e. constant rate for evolution

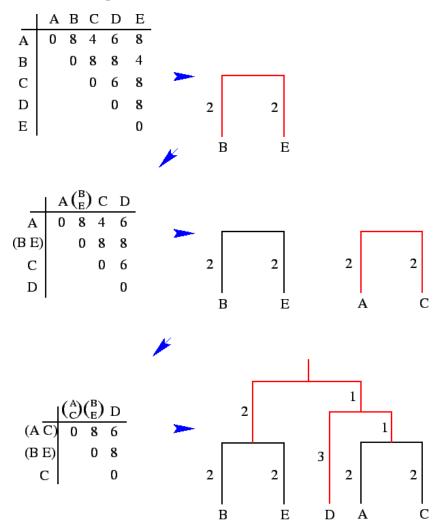


Figure: Construction of an ultrametric tree CISC636, F16, Lec8, Liao

- Add sequences to the growing alignment by following the order in the guide tree
 - Represent a multiple alignment as profile (Position Specific Scoring Matrix)
 - Given an alignment, a profile at each column is a vector of 20 specifying the frequencies of 20 amino acids appearing in that column.
 - Construction of profiles based on multiple sequence alignment.

A. Sequence alignment"																								
urt-71	Α	T	T	T	Α	G	T	Α	T	C	A	Α	A	Α	A	T	A	A	С	Α	Α	T	T	C
glnA-71	G	T	T	C	T	G	T	A	A	C	A	Α	A	G	A	C	T	Α	C	Α	A	A	A	C
nirA-71	A	T	T	T	T	G	T	A	G	C	T	A	C	T	T	A	T	Α	С	T	A	T	T	T
ntcB-71	A	A	G	C	T	G	T	A	A	C	A	A	A	A	T	C	T	Α	C	С	A	Α	A	T
devBCA-71	C	A	T	T	T	G	T	A	С	A	G	T	C	T	G	T	T	Α	С	С	T	T	T	A
B. <u>Table of occurrences</u> ^a																								
A	3	2	0	0	1	0	0	5	2	1	3	4	3	2	2	1	1	5	0	2	4	2	2	1
C	1	0	0	2	0	0	0	0	1	4	0	0	2	0	0	2	0	0	5	2	0	0	0	2
G	1	0	1	0	0	5	0	0	1	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0
T	0	3	4	3	4	0	5	0	1	0	1	1	0	2	2	2	4	0	0	1	1	3	3	2
C. Position-specific scoring matrix $(B = 0)^b$																								
A	50	.40	0	0	.20	0	0	.0	.40	.20	i0	30	i0	.40	.40	.20	.20	.0	0	.40	30	.40	.40	.20
C	.20	0	0	.40	0	0	0	0	.20	30	0	0	.40	0	0	.40	0	0	.0	.40	0	0	0	.40
G	.20	0	.20	0	0	.0	0	0	.20	0	.20	0	0	.20	.20	0	0	0	0	0	0	0	0	0
T	0	50	30	i0	30	0	.0	0	.20	0	.20	.20	0	.40	.40	.40	;0	0	0	.20	.20	50	50	.40

Align a sequence to a profile

Treat as aligning two sequences. To align column i of profile P to sequence j-th residue (with amino acid b), the score is computed as follows.

$$s(i,j) = \sum_{a \in [20 \text{ amino acids}]} P_i(a) S(a, b)$$

where S(a,b) is any amino acid substitution score matrix that is in use (e.g., PAM250, or BLOSUM62).

Then, a DP algorithm can be applied to find an optimal alignment.

For example: PSI-BLAST

- Align profile P to profile Q
 - The score for aligning position i of P to position j of Q

$$S(i,j) = \sum_{a} \{P_i(a) \sum_{b} [Q_j(b) S(a,b)]\}$$

Note: there are different scoring schemes. One other example is to use relative entropy:

$$S(i,j) = \sum_{a} P_i(a) \log [P_i(a) / Q_j(a)]$$

Use DP to find optimal alignment, i.e., maximizing the total score.

Algorithm: clustalw (Higgins and Sharp 1989)

- i. construct a distance matrix of all N(N-1)/2 pairs by pairwise DP alignment
- ii. construct a guide tree by a neighbor-joining method
- iii. Progressively align at nodes in order of decreasing similarity, using sequence-sequence, sequence-profile, and profile-profile alignment.

Heuristic

Column once aligned, will not change later when new sequences are added

can handle < 1,000 sequences

Algorithm: T-COFFEE

can handle < 10,000 sequenece

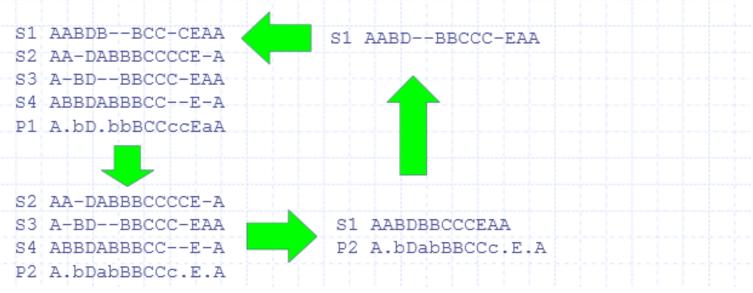
Iterative Approach

• MUSCLE (Multiple Sequence Comparison by Log-Expectation)

http://www.ebi.ac.uk/Tools/msa/muscle/

Faster and more accurate

Stage 1: builds a guide tree based on fast scoring (k-mer counting)


Stage 2: improves the tree through iterative improvements of distance measures

Stage 3: improves MSA through iterative profile-alignment of tree fragments to maximize SP score.

Iterative Techniques [Barton Sternberg 87]

- Key Idea: use profile to optimize MSA
- Input: MSA
- Iterate the following process until convergence:
 - Select a sequence X_k compute profile of the other sequences
 - Align Xk against this profile to create new MSA

Example:

Credit: Yechiam Yemini (Columbia U)