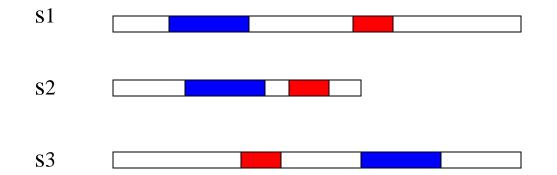
CISC 636 Computational Biology & Bioinformatics (Fall 2016)

Pairwise sequence alignment


Smith-Waterman (local alignment)

Local pairwise optimal alignment

why need local alignment (vs global)?

- mosaic structure (functioning domains) of proteins, which may be caused by in-frame exchange of whole exons, or alternative splicing)

e.g., are these three sequences similar or not?

Local alignment

- Naive algorithm:
 - there are $\Theta(n^2 m^2)$ pairs of substrings; to align each pair as a global alignment problem will take O(nm); the optimal local alignment will therefore take O(n³ m³).
- **Smith-Waterman** algorithm (dynamic programming) recurrence relationship

```
F(i,j) = \max \{ 0, \\ F(i-1, j-1) + s(x_i, y_j), \\ F(i-1,j) - d, \\ F(i, j-1) - d \\ \}
```

Notes: 1) For this to work, the random match model must have a negative score. <u>Why?</u>

2) The time complexity of Smith-Waterman is $\Theta(n m)$.

Example: Align HEAGAWGHEE and PAWHEAE.

Use BLOSUM 50 for substitution matrix and d=-8 for gap penalty.

		Н	Е	Α	G	Α	W	G	Н	Ε	Ε
	0	0	0	0	0	0	0	0	0	0	0
Ρ	0	0	0	0	0	0	0	0	0	0	0
Α	0	0	0	5	0	5	0	0	0	0	0
W	0	0	0	0	2	0	20	12	0	0	0
Н	0	10	2	0	0	0	12	18	22	14	6
Ε	0	2	16	8	0	0	4	10	18	28	20
Α	0	0	8	21	13	5	0	4	10	20	27
Ε	0	0	0	13	18	12	4	0	4	16	26

AWGHE

AW-HE

Gap penalties

• Linear

$$\gamma(g) = -g d$$

where g is the gap length and d is the penalty for a gap of one base

• Affine

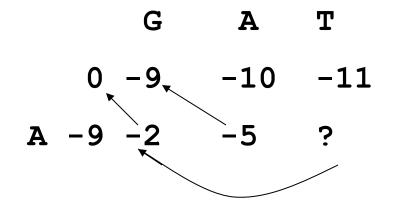
$$\gamma(g) = -d - (g-1)e$$

where d is gap-open penalty and e, typically smaller than d, is gap-extension penalty. Such a distinction is mainly to simulate the observation in alignments: gaps tend to be in a stretch.

Note: gap penalty is a sort of gray area due to less knowledge about gap distribution.

General algorithm to handle Affine gap penalty

To align two sequences x[1...n] and y[1...m],


i) if x at *i* aligns with y at *j*, a score $s(x_i, y_j)$ is added; if either x_i or y_j is a gap, a score of $\gamma(g)$ is subtracted (penalty).

ii) The *best* score up to (i,j) will be

$$F(i,j) = \max \{ F(i-1, j-1) + s(x_i, y_j), \\F(k,j) - \gamma(i-k), k = 0, ..., i-1 \\F(i, k) - \gamma(j-k), k = 0, ..., j-1 \}$$

This algorithm is $O(n^3)$ for n=m.

Example: Align **GAT** and **A** using the following scoring scheme: identity 4; transition -2; transversion -4; gap penalty: op = -9, ex = -1

GAT GAT

-A- A-

Gotoh algorithm (1982) [Affine gap $\gamma(g) = -d - (g-1)e$] $F(0,i) = \gamma(i), F(i,0) = \gamma(i)$ $F(i,j) = \max \{ F(i-1, j-1) + s(x_i, y_i), \}$ P(i, j), // gap in sequence y; vertical moves Q(i, j) // gap in sequence x; horizontal moves $P(0,j) = -\infty$ // so as to always take F(0,j) $P(i,j) = \max \{ F(i-1,j) - d, // open a gap \}$ P(i-1,j) - e // extend a gap $Q(i,0) = -\infty$ //so as to always take F(i,0) $Q(i,j) = \max \{ F(i, j-1) - d, //open a gap; \}$ Q(i, j-1) - e // extend a gap This algorithm is $O(n^2)$