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Background
e Proteins do not function as isolated entities.

e Protein-Proteln interaction Is essential to
cellular functions.

» \When two proteins interact, it can mean:

— They physically interact

— They are enzymes catalyzing successive reactions
In a pathway

— One protein regulates expression of the other
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Protein-Protein Interaction plays essential
roles in cellular processes
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PPl network reconstruction is a central task In
systems biology

T c I - = -

Given a pair of proteins:

1. Do they interact? (identify de novo pathways, cross talk)

2. How do they interact, i.e., which amino acids are involved
In interaction? (design mutants to modulate PPI)



Data sources

» Yeast 2-hybrid system

e 2-D gel + MSMS

« Gene expression (DNA microarray)

» Localization data

* Phylogenetic profiles

» Structural information at binding sites
e Sequences?
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Table 1. Different Experimental Methods Measuring Protein Interactions

Method High-Throughput  Living Cell  Type of Interactions Type of Characterization
Approach Assay

Y2H [47,48] ! In vivo Physical interactions (binary) Identification

Affinity purification-MS [61] i In vitro Physical interactions (complex) Identification

DNA microarrays/Gene coexpression [113] | In vitro Functional association Identification

Protein microarrays [114-116] | In vitro Physical interaction (complex) Identification

Synthetic lethality [85,86] ! In vivo Functional association Identification

Phage display [117] | In vitro Physical interaction (complex) Identification

X-ray crystallography, NMR spectroscopy [84] In vitro Physical interactions (complex) Structural and biological characterization

Fluorescence resonance energy transfer [89] In vivo Physical interaction (binary) Biological characterization

Surface plasmon resonance [91] In vitro Physical interaction (complex) Kinetic, dynamic characterization

Atomic force microscopy [93] In vitro Physical interaction (binary) Mechanical, dynamic characterization

Electron microscopy [118] In vitro Physical interaction (complex) Structural and biological characterization

Shoemaker & Panchenko, 2007 PLoS Computational Biology
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An experimentally derived confidence score for binary
protein-protein interactions
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Figure & | Performance of assays against positive and random reference sets PRS and RRS. (a) Quantification of assay sensitivity and specificity, with s.e.m.,
using hsPRS-v1 and hsRRS-v1. (b) Detection of individual hsPRS-v1 and hsRRS-v1 pairs by the tool kit assays. Top panel: detected hsPRS-v1 pairs are indicated
by yellow squares. Bottom: detected hsRRS-v1 pairs are indicated by blue squares. Phosphorylation-dependent interactions are boxed. Thresholds used for the
assays can be found in Methods.
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Table 1. Different Prediction Methods

Method Name Protein/Domain Physical Interaction/
Interaction Functional Association

Gene co-expression
Synthetic lethality
Gene cluster and gene neighbor
Phylogenetic profile
Rosetta Stone
Sequence co-evolution
Classification
Integrative

Domain association
Bayesian networks
Domain pair exclusion
p-Value
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Second column shows if method is designed to predict protein (P) or domain (D)
interactions (note that predicted domains can also be used for verifying protein
interactions).

Third column shows if the method can be used to infer direct physical interaction (P) or
indirect functional association (F).

Shoemaker & Panchenko, 2007 PLoS Computational Biology
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Table 1 Databases and resources useful for researching PPls.

Database URL Resources
BIMNC Peer-reviewed bio-molecular interaction database containing published interactions http.//bind ca/
and complexes
BioGRID Protein and genetic interactions from major model organism species http.//www thebiogrid .org/
C0Gs Orthology data and phylogenetic profiles http/ fwww.ncbi.nlm.nih.gov/COG/
DI Experimentally determined interactions between proteins http.//dip.doe-mbiuclaedu/
HPRD Human protein functions, PPls, post-translational modifications, enzyme-substrate http.//wwwhprd.org/
relationships and disease associations
IntAct Interaction data abstracted from literature or from direct data depositions by expert http.//wwwebiac.uk/intact/
curators
iPFAM Physical interactions between those Pfam domains that have a representative http./fipfam.sanger.acuk/
structure in the Protein DataBank (POEB)
MINT Experimentally verified PPl mined from the sdentific literature by expert curators http.//mintbio.uniroma it/mint/
Predictome Experimentally derived and computationally predicted functional linkages http:/Avisantbuedw
ProLinks Protein functional linkages http://mysgls.mbi.udaedu/cgi-bin/
functionator/pronav
SCOPPI Domain—-domain interactions and their interfaces derived from PDB structure files and  http//wwwscoppi.org/
5COFP domain definitions
S5TRING Protein functional linkages from experimental data and computational predicttions http.//stringembl.de/
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Use of sequence information

(gene cluster)

A | Gene cluster
co-regulation >

Gene neighborhood
Genome 1 (A oon B pum C gl D |
I N =

Moreno-Hagelsieb G, Collado-Vides J (2002) A powerful non-homology
method for the prediction of operons in prokaryotes. Bioinformatics 18:
S329-S336
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Use of sequence information

(Rosetta stone, Gene fusion)

Yeast Topoisomerase || - e
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E. coli y-glutamyl phosphate reductase
E. coli glutamate-5-kinase

Marcotte et al, Science (1999)
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Figure 1 Prediction of functional linkages between proteins, based on different methods. (A) Method of domain fusion. The figure
shows proteins predicted 1o interact by the Rosetta stone method (domain fusion). Each protein is shown schematically with boxes representing
domains, Proteins P2 and P3 in Genomes 2 and 3 are predicted to interact because their homologues are fused in the first genome, (B) Gene
neighbourhood. The figure shows four hypothetical genomes, containing one or more of the genes &, B and C. Since the genes A and B are
co-localised in multiple genomes (1-4), they are likely to be functionally linked with one another. (C) Phylogenetic profiles. The figure shows
five hypothetical genomes, each containing one or more of the proteins A, B, C and D. The presence or absence of each protein is indicated by
1 or 0, respectively, in the phylogenetic profiles given on the right. Identical profiles are highlighted — proteins A and B are functionally linked
(dotted ling), whereas proteins C and D, which have different phylogenetic profiles (shown in grey) are not likely to be functionally linked. (D)
Correlated mutations. The alignments of two protein families are shown; conserved residues in either alignment are shown in the same colour
(blue and green). Correlated mutations in either alignment (coloured red) are indicated by arrow marks. Common sub-trees of the phylogenetic
frees are highlighted in yellow. The presence of correlated mutations in each family suggests that the corresponding sites may be involved in
mediating interactions between the proteins from each family,
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Use of structural information

Structural Compatibility

Trypsin inhibitor Thermitase
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Proteins Interact via Domains

Protein Protein

Residues at
interface tend to be
more conserved
due to selection
pressure during

Chemical bonds
are formed
between amino

aCidS across evolution.
Interface at two

Interacting

proteins. Domain A Domain B

— —
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Not all residues in domain directly participate in
Interaction

RING domain:
cysteines residues in
red interact with
Zn++ 1ons to
stabilize the ring
finger structure;
residues colored
blue are on the
Interacting
Interface.

Wilson et al, BMC Dev. Biol.
(2011)



Profile Hidden Markov Models capturing interaction

« P(x|0) : probability that sequence x contains a domain described
by the model 6.
* Viterbi algorlthm can allgn X agalnst the model to annotate

it cegidues e e
ipHMM N fﬁ &

N O
i i i protein sequence, X

Friedrich et al, Bioinformatics 2006 16



From Domain to Domain-Domain Interaction

Given a pair of proteins:

1. Do they interact?

2. How do they interact, i.e., which amino
acids are involved in interaction?

Simple Solution:

I. Query the sequences against domain databases like
Pfam.

1. If Protein X contains domain A, Protein Y contains
domain B, and it is known that domain A interacts
with domain B, then Protein X interact with Protein .

How reliable is the prediction?

If P(X|A) = 0.8, P(Y|B) = 0.8, probability X and
Y interact via domains A and B is P(X|A)-P(Y|B)
=0.8x0.8=0.64.



From Domain to Domain-Domain Interaction to Protein-
Protein Interaction
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Megative examples (training and testing)

Gonzalez & Liao, BMC Bioinformatics 2010



Results: Fisher--SVD-+SVM vs InterPreTS

Category Domain A Domain B # of distinct InterPreTS Fisher+-SVD-+SVM
complexes (avg. Z-score) (avg. Z-score)

RAS Rho GAP 5 1.87 30.95
Signaling RAS Rho GDI 4 2.36 14.64
G-alpha Guanylate-cyc 15 3.70 22.95
. FGF ig 6 1.01 24.55
Cytokines-Receptors - pop |-set 10 1.51 21.22
Kringle Trypsin 4 1.72 31.53
X _ Squash Trypsin 9 1.28 10.23
Peptidases-Inhibitors 1o Trypsin 4 0.73 30.64
Peptidase M10 TIMP 6 0.61 31.35




Given a pair of proteins:

1. Do they interact?

2. How do they interact, i.e., which amino
acids are involved In interaction?

Wt y et matrix? Sequence B
at Is residue contact matrixa B, B, B, B. .. B

1 0
0 0jof1]. 10
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Predicting residue contact matrix for a pair of interacting
proteins

seqs B
domain B
< 12
E 1,2,3,45
© W
E 3 2,3,45
O 0
=

seqs A Family Contact Matrix

Gonzalez, Liao, Wu, Bioinformatics 2013
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PiamA PfamB
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Results: LOOQO cross-validation, 115 DDls

Sensitivity Specificity AUC

Average M,;-84.46% M ,;:69.54% Mp;:81.01%
M;:71.75%  M;:84.81%  M;:89.35%

All vectors M,;:84.10% M ,,;:66.53% M,;:83.33%
M;:59.90%  M;:82.62%  M;:01.20%

Baseline 56.92% 78.22% 78.16%
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Available online at www.sciencedirect.com Current Opinion in

SciVerse ScienceDirect Structural Biology
Current Opinion in Structural Biology 2013, 23:1-12

Towards a detailed atlas of protein—protein interactions
Roberto Mosca'>, Tirso Pons?>, Arnaud Céol'>>,
Alfonso Valencia® and Patrick Aloy'*

Table 2

Represemntative protein-protein prediction methods and resources. The table lists a set of available resouwrces for the prediction of
protein-protein interactions. The different resources use different types of input data, from sequence to structural data, as outlined inthe
description

Method Description Web-servers/databases/contacts Ref.
iLoops Uses protein structural features (loops and domains) of httpi//sbi.imim.es/iLoopsServer/index.php [64]
interacting and non-interacting protein pairs to
determine whether any pair of proteins interacts or not.

PrePPI Combines structural, functional, evolutionary and http:/bhapp.c2b2.columbia.eduwPre PPI/ 8%
expression information to predict PPis on a genome-
wide scale.

STRING A database of known and predicted PPls for a large httpi/string-db.org/ frean

number of organisms that includes direct (physical)
and indirect (functional) associations. Predictions s~

A rvlivmd brmeey Al e e s

http://struct2net.csail.mit.edu [37,115]
- L ] tecmiqu@.
Also compute a confidence score that addresses both
false-positive and false-negative rates.
iWRAP Predicts PPIs and their interfaces based on a protein- http://iwrap.csail.mit.edu [116]
interface threading approach.
SVM-ipHMM Predicts the interacting residue pairs for protein liao@cis.udel.edu [117]

domains using support vector machines (SVM) and
interaction profile hidden Markov model (ipHMM).
PPI-DDA matrix Infers positive and negative Domain-Domain s_anishetty@annauniv.edu [118]
Associations (DDA) by using high-throughput PPls
data and the Pfam domain composition of the proteins.
RF-mRMR-IFS A machine-learning approach that predicts PPIls
based on physicochemical/biochemical nr~-" 24



Knowledge Leverage and Integration for Better
Learning
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Method:

Sequence B IDHMM
RB, RB, RB; RB, RBs .. RB,
Sequence B bltf

RA, | O 1 00 1 ]...] 1 1 RB, RB, RB, RB, RB; .. R,
RA, | O L O O] 0] O 0 0 O] 1|00/ 1 /|..[]1 1
<<
§RA3 01 0]0,07]O0 0 0
Q — 0 [ 0| 001 01]0
g1 0l0[0]O0]1 0 0
% -

0]0|]0]| 0] O 010
RAw 1 O] O]O]O0|[O]|...]0 0

Feature Vectors with contact matrix prediction
(vellow) and ipHMM prediction (green)

Integrated machine learning classifier with contact matrix
prediction and ipHMM site prediction.
Classifier: Logistic Regression 1
rtY =1] X,,.>, k):1
+eXP[~(By + BX, + B Xy ot BX]
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Results

The data set contains 72 DDI families collected from
3DID. Each has 10 ~ 20 member sequences, with

dolrg)a}gq ]engﬂth_< 150 residues.

nteraction site prediction performance of different models
Avg, Avg, Avg, Avg, Avg,
Accuracy Fl MCC Precision Recall

ipHMM 94.93% 7561% 7369% 7T7.56% 76.51%

CM- 96.97% 90.05% 89.11% 85.98% 96.83%
ipHMM

CM- 96.30% 88.52% 87.23% 85.22% 594.91%
Onlv

Ground- 599 83% 99.51% 9940% 99 89% 99 21%
truth-CM

CM-ipHMM vs. ipHMM : p-value, 4.36E-77,
CM-ipHMM vs. CM-Only : p-value, 9.32E-10;
Ground-truth-CM: Replace predicted contact matrix with
ground-truth

contact matriv



Basic 1dea of our method

1

1, ifP(i,j)>€
0, otherwise

n
Wo G + > WiK;
i=1

Aiterred (/s J) = {

Kernels

Kernel Fusion
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Weight Optimization by Linear
Programming (WOLP)

Q(i:j) = Kfusion(i'j)

__argmin
w

1Q — Q|17




Weight Optimization by Linear
Programmlng (WOLP)

\ o : Toy network G(V, E)
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Algorithm

Algorithm 1 Supervised WOLP

Input. Gtﬂ? Gﬂn, Gtt, RL, K
Output: Wort
1: 8+ a start node with large degree in Gin
2: D + direct neighbors of start node =
3 L+ Viif d(s,V;) >= v I/ V is the nodes set of Gtn, d is the shortest
ath
4: g" +— RWR(Gin, &) // random walk with restarts from start node s in
Gin. [17] o

Q4(i,5) + orir i
W* +— by solumg Eq (10) with upper or lower triangle mapping
OFT-K+— Wi Gin + Z WK,

e = &, LA

=1

R+ Inference(RIf, OPT-K,Gyn)

// In the Inference function, RL has been applied to kemel fusion
OPT-K to infer validation edges Gyn.

» Golden standard connected G..E) G.E) GE)=G (E)
network: G(V, E) G.E) G.B) G.B)=1
» Connected training network:

VY N F pE——\




Experiments on network inference
with real data

Data description of DIP yeast PPI networks(Release
20150101)

 Largest connected component: G(V, E) = (5,030, 22,394)
(1) Connected training network: G,,(V, E) = (5,030, 5,394)
(2) Validation edge set: G,,(V, E) = (?, 1,000)

(3) Testing edge set: G,(V, E) = (?, 16,000)



Experiments on network inference with
real data)

Feature kernels [39]

Kiaccardl12]: This kernel measure the similarity of protein pairs 1, j in term of
neighbors(i)Mneighbors(j)/neighbors(i)uneighbors(j).

Kgy: It measures the total number of neighbors of protein i and j, KSN =
nelghbors( ) + neighbors(j).

Kg: It is a sequence-based kernel matrix that is generated using the BLAST.

Ke: This Is a gene co-expression kernel matrix constructed entirely from
mlcroarray gene expression measurements.

Kpsam: This Is a generalization of the previous pairwise comparison-based
matrices in which the pairwise comparison scores are replaced by expectation
values derived from hidden Markov models (HMMs) in the Pfam database.

@ O ©

[39] Y. Yamanishi, J.-P. Vert, and M. Kanehisa. Protein network inference from multiple genomic data: a supervised approach.
Bioinformatics, 20(suppl 1):1363-i370, 2004.



Sensitivity

DIP Yeast PPI: prediction for qt~1 6000
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