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Gene Networks

« Definition: A gene network is a set of molecular components, such

as genes and proteins, and interactions between them that collectively
carry out some cellular function. A genetic regulatory network refers
to the network of controls that turn on/off gene transcription.

« Motivation: Using a known structure of such networks, it is
sometimes possible to describe behavior of cellular processes, reveal

their function and the role of specific genes and proteins
* Experiments

— DNA microarray : observe the expression of many genes simultaneously
and monitor gene expression at the level of MRNA abundance.

— Protein chips: the rapid identification of proteins and their abundance is
becoming possible through methods such as 2D polyacrylamide gel
electrophoresis.

— 2-hybrid systems: identify protein-protein interactions
» (Stan Fields’ lab http://depts.washington.edu/sfields/)
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Regulation

Genes Message _ | o iain— Function/ __ Other
(DNA) (RNA) Environment Cells

Regulation
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Operon
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lac operon on E. coli

Repressor protein
coded by lacl,
bind to P2
preventing
transcription of
lacZ, lacY and
lacA

Lactose binds
with lacl,
allowing RNA
polymerase to
bind to P2 and
transcribe the
structural genes



Genetic Network Models

— Linear Model: expression level of a node in a network depends on
linear combination of the expression levels of its neighbors.

— Boolean Model: The most promising technique to date is based on
the view of gene systems as a logical network of nodes that
Influence each other's expression levels. It assumes only two
distinct levels of expression: 0 and 1. According to this model a
value of a node at the next step is boolean function of the values of
Its neighbors.

— Bayesian Model: attempts to give a more accurate model of
network behavior, based on Bayesian probabilities for expression
levels.
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Evaluation of Models
— Inferential power
— Predictive power
— Robustness
— Consistency
— Stability
— Computational cost
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Boolean Networks: An example

WO B o 1: induced
1 1 1 0 |m :
8 8 ¢ 0: suppressed
1 - 0 0 |m .
f 14 : t =& -: forced low
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Interpreting data ‘ Reverse Engineering
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A A directed graph struciure with B The truth table C The logic equations for each node
numbered nodes connacled by adges {shown for node 3 anly)

CISC636, F16, Lec21, Liao



Boolean networks: A Predictor/Chooser scheme

- Predictor Chooser New Gene
Expressio (may give "l(suggest new | | EXpression
Profile multiple perturbation | | Profile

networks) experiments)
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Predictor

A population of cells containing a target genetic network T
IS monitored in the steady state over a series of M
experimental perturbations.

* Ineach perturbation p., (0 <m < M) any number of nodes
may be forced to a low or high level.

X, X, X, X,
1 1 1 0 P, «— Wild-type state
- 1 0 1 p,

E - 1 - 0 0 p: -: forced low
1 1 - 1 P _
1 1 1 | P, +: forced high

Figure 2: Example expression matrix
generated from the genetic network in fig. 1.
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Step 1. For each gene x,, find all pairs of rows (i, J) in E In
which the expression level of x, differs, excluding rows in
which x. was forced to a high or low value.

-"in " i "E" . For x4, we find:
- 1 0 1 P,
L ; Yo N (PO, p1),
! - L | e (PO, p3),
1 1 1 + P
(p1, p2),
Figure 2: Example expression matrix (pz’ p3)

generated from the genetic network in fig. 1.
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Step 2. For each pair (1,J), S; contains all other genes whose
expression levels also differ between experiments i and j.
Find the minimum cover set S_..., which contains at least
one node from each set S;;

X, X, X, X,
1 | 1 0 P,
| 0 1 P,
E= ] - 0 0 2
1 | - 1 P
1 | 1 + P,

Figure 2: Example expression matrix
generated from the genetic network in fig. 1.

Step 1.
(pO,p1),
(PO, p3),
(p1,p2),
(p2,p3)

Step 2:

(PO, p1)->Sp;={Xo, X2}
(PO, p3)->Sgz={X,}
(P1, p2)-> S1={Xp, X1}
(P2, p3)->S,5={X,)

So, now the S, IS {X;, X5}
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Step 3. use the nodes in S, as input, X as output, build truth

table to find out f_ (In this example, n=3)

Now the S, IS {X, X5}

X” X .X: ,Y_‘\
L1 10 |p X4 1010
1 0 I P,
E=11 U 2 X, 1100
1 1 - I P,
1 1 I | P,
X, 0%10

Figure 2: Example expression matrix
generated from the genetic network in fig. 1.

Sof, = 0%10

* cannot be determined
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Chooser

For L hypothetical equiprobable networks generated by the
predictor, choose perturbation p that would best
discriminate between the L networks, by maximizing
entropy H, as defined below.

I_IIO = - 21> (/L) log, (I/L)

where | is the number of networks giving the state s
Note: (1<s<S),and (1<S<L)
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Result and Evaluation

e Evaluation of Predictor

« construct a target network T: size = N, and maximum in-degree = k (where the
in-degree of a node is its number of incoming edges)

 sensitivity is defined as the percentage of edges in the target network that were
also present in the inferred network, and specificity is defined as the
percentage of edges in the inferred network that were also present in the target

network. ]
A B C D E F G H ! J

. Total Sim. Num. Inferred Total ‘Num. Sens- Spec- Num. C,PU

N k Ed Network Inferred Shared itivity  ificity Nodes w/ Time

ges ctworks Edges Edges tavity ety 1 Soln. (sec)
5 2 4 (0.1) 1(.02) 3 (0.1) 3 (0.1) 77% 99% 5 (0.0) 0.1 (0.0)
10 2 12 (0.1) 60 (50) 9 (0.1) 9 (0.1) 71% 95% 9 (0.1) 0.1 (0.0)
20 2 27 (0.2) 3%107 (107) 21 (0.2) 19 (0.1) 71% 92% 18 (0.1) 0.2 (0.0)
50 2 72 (0.2) 1x10" (10") 57 (0.3) 51(0.3) 71% 90% 45(0.2) 0.8 (0.0)
100 2 146 (0.7) 3x10™ (10™) 119 (0.9) 104 (0.7) 70% 88% 89(0.5) 6.6 (0.3)
20 4 44 (0.3) 2x10° (10°) 28 (0.3) 23 (0.2) 51% 84% 16 (0.1) 0.2 (0.0)
20 6 57 (0.5) 2x107 (107) 33(0.3) 27(0.2) 42% 82% 14 (0.2) 0.2 (0.0)
20 8 69 (0.7) 9%10" (10%) 38 (0.4) 31(0.3) 35% 82% 13 (0.2) 0.2 (0.0)
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Discussions

— Incorporate pre-existing information
— Boolean to multi-levels

— Cyclic networks

— Noise tolerance

References
— ldeker, Thorsson, and Karp, PSB 2000, 5: 302-313.
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Bayesian Networks

Biological processes are stochastic

- Data can be noisy as well.

positive edgk‘ /negatiue edge

§ Cluantitative part:

Gene A | Gene B | P(C+|AB) | P(C-|AB)
+ + 0.6 0.4
- + 0.01 0.99
+ - 0.99 0.01
- - 0.4 0.6

=

This row indicates that when
(Gene A and Gene B are up-
regulated, then Gene C has a
60% probability to be up-
regulated and a 40% probability
to be down-regulated.
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I conditions

, X1 Xpp xlm\\
variables
]:ZI xZE IZm —
X, X,
(genes)
l K'xnl xn‘E Inm )
. J
'

m independent (steady-state) observatiol

of the system X,,.. Xy

Query/Inference: P(X1 | X6, X7) ?
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Join
probability

P(Xy, .... X»)

e.g.

P(+,+,-, ...,+) =
0.003
P(-,+,+,...,-) =
0.00015

2N
How many

combinations?
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Conditional Probability and Conditional Independence
00
120

P(One) = %
3
P(One|Square) = S
3 1
P(One|Black) = =3
2 1
P(One|Square M Black) = =3
P(One|White) = ?i:%
1
P(One|Square N White) = .

So One and Square are not independent, but they are conditionally independent

given Black and given White.
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Bayesian Network as an efficient way to factorize the Joint Probability

Factorization of join probability Example:
P(Xi, ..., H P(X) Xy, ..., Xi—1) P(A.E,B,C,D)=P(A) P(E|A) P(B|A,E) P(C|A,E,B)
P(D|AE,B,C)
# of parameters = 2%-1 # of parameters=1+2+4+8+ 16 =31

Conditional independence
P(Xy, ..., H P(X;|Pa;) P(A.E.B,C.D) = P(A)P(E)P(B|AE)P(C|B)P(D|A)

Assuming max in-degree k, the Zl )E 3(

number of parameters is o

reduced to 2kN
# of parameters=1+1+4+1+1=10
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A greedy Algorithm to Learn Bayesian Network from the data

Input

D// adata set
G, // initial network structure

Qutput
G // final network structure
Greedy-structure-search

Gpest = Go
repeat // apply best possible operator to G in each iteration
G = Gpest
foreach operator o // (each edge addition, deletion, or reversal on G)
G°=0(G) // apply to G
if G°is cyclic continue
if scoreBDe(G® : D) > scoreBDe(Gy e : D)
Gpest = G°

until G == G,.; // no change in structure improves score
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Parameter Estimation

-Maximum Likelihood
-Bayesian approach

- Dirichlet priors are used for model parameters.

Structure evaluation
BavesianScore(M) =log[P(M | D)]

=log[P(M)] + log[P(DIM)] +c

« Where M = model, D = microarray data, ¢ = constant
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Model Averaging

@Q@) % @ @‘Q GS@
© © ©

P(G,|D) = 3041 P(G,|D) = 30.43 P(G,|D) = 30.44 P(G,|D) = 30.42 P(G|D) = 30.40
P[f(G)|D] = Zf (G)P How to compute
P[f(G)|D]?

Feature f: edge X—Y is in the network. -Enumerate all high
scored networks
f(G) = 1, if G has the feature - Sampling (MCMC)

= 0, otherwise. - Bootstrap
CISC636, F16, Lec21, Liao 22



Bootstrap

* Fori=1, ..., m construct a data set D, by sampling, with
replacement, M instances from D. Then, apply the learning
procedure on D. to induce a network structure G..

* For each feature f of interest, calculate
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Figure 4

Clustergram of quantized gene expression profiles
for 37 genes of interest, over 2904 microarrays. Both
genes and experiments have been clustered. The three
classes representing the low, medium and high classes are
coloured blue, white and red respectively.

o o G G os

Figure 5

Lega.rned regulatory network for other networks and poorly-characterized genes. The learned network structure
starting from a set of nine genes (four clock and five GATA genes of interest), with additional genes added to the necwork from
a selection of 37 genes. The number in parentheses next to the gene name denotes the order it was added to the network.
Most of these genes were added to the network in early ierations, however, genes such as SRR and ZTL with bona fide roles
in the clock were added late and only indirectly linked to other dlock components. All these interactions are very similar
throughout the later iterations. once most of these components have been added to the nerwork.
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