CISC 436/636 Computational Biology & Bioinformatics (Fall 2016)

RNA secondary structure

CISC636, F16, Lec16, Liao

Facts about RNAs

- Mainly as "information carrier" in protein synthesis
 - mRNA
 - tRNA
- Also as catalysts
 - Ribozymes
- Also as regulator
 - RNAi
- Single strand
 - Intra-molecular pairing
 - Secondary structure
 - Essential for sequence stability and function
- Similarity in secondary structure plays a more important role than primary sequence in determining homology for RNAs

CISC636, F16, Lec16, Liao

tRNA Secondary Structure

RNA stem loop

hybridization pairing: A-U, and C-G

A A	C A	C A	
G A	G A	G	А
G - C	U — A	U x	С
$\begin{array}{c} A \\ C \\ \end{array} = \begin{array}{c} 0 \\ C \\ \end{array}$	C — G	C x	U
ι — θ	G — C	G x	G
seq1	seq2	seq3	
where "-" stands for a	a pairing, and "x" for no p	airing.	

In the above example, seq1 and seq2 fold into a similar structure, whereas seq3 does not.

Pairwise alignments disregarding such structural restrictions may be misleading; seq2 and seq3 have 70% sequence identity, seq1 and seq3 have 60%, whereas seq1 and seq2 have only 30%.

seq1 CAGGAAACUG seq2 GCUGCAAAGC seq3 GCUGCAACUG Representations for palindromic structures

There is a 1-1 correspondence between RNA secondary structures and well-balanced parenthesis expressions, where the balancing parentheses correspond to base pairings via hydrogen bonds.

Secondary structure prediction

Base pair maximization algorithm [Nussinov]

 $m_{i,j}$: maximal # of base pairs that can be formed for sequence $s_i \dots s_j$. $d_{i,i} = 1$, if s_i and s_i are paired = 0, otherwise Initialization $m_{i,i-1} = 0$ for i = [2, L] $m_{i,i} = 0$ for i = [1,L]Recursion $m_{i,i} = max \{m_{i+1,i}, m_{i+1,i}\}$ m_{i,j-1}, $m_{i+1,i-1} + d_{i,i},$ $\max_{i < k < i} \{ m_{i,k} + m_{k+1,i} \}$ // bifurcation ł

Dynamic programming table

Time Complexity: $O(L^3)$, where L is sequence length Space complexity: $O(L^2)$

CISC636, F16, Lec16, Liao

Secondary structure prediction

Minimum energry algorithm [Zuker]

$$\begin{split} E_{i,j}: & \text{minimum energy for an optimal fold formed by sequence } s_i \dots s_j. \\ e_{i,j} &= -5, \text{ if } s_i \text{ , } s_j \text{ is CG or GC} \\ &= -4, \text{ if } s_i \text{ , } s_j \text{ is AU or UA} \\ &= -1, \text{ if } s_i \text{ , } s_j \text{ is GU or UG} \end{split}$$

Initialization

$$\begin{array}{ll} E_{i,i-1} = 0 & \quad \mbox{for } i = [2, L] \\ & \\ E_{i,i} = 0 & \quad \mbox{for } i = [1,L] \end{array}$$
 Recursion

Resources

Lecture notes:

http://www.bioinfo.rpi.edu/~zukerm/lectures/RNAfold-html/

RNA informatics:

http://www-lbit.iro.umontreal.ca/RNA_Links/RNA.shtml

Software:

- -Vienna RNA fold
- Mfold (http://www.bioinfo.rpi.edu/zukerm/export/)