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Probabilistic methods 
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Bayes rule revisited. 

  P(model|data) = P(data|model) P(model)/P(data) 

• model includes  

– our evolution theory,  

– a specific phylogenetic tree (topology and edge lengths), and 

– assignment of sequences to the tree leaves. 

• Data: a set of sequences that are used to infer phylogeny. 

 
Let P(x|y, t) be the probability in that sequence x is evolved from an ancestral 

sequence y over an edge of length t. 

 

P( x1, x2, x3, x4, x5|T, t.)  

        = P( x1| x4, t1) P( x2| x4, t2) P( x3| x5, t3) P( x4| x5, t4) P( x5) 

 

A shorthand notation P( x·|T, t.) is used where x· stands for 

 a set of sequences, and t. for edge lengths of the tree T.    x1 

2 

   x2 

   x3 

   x4 

   x5 

   t1 
   t2 

   t3 

   t4 
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In general, if we know 

• P(x|y, t) for any x, y, and t 

• A tree T, and assignment of sequences to tree nodes, 

Then we can compute the likelihood for observing the sequences as they 
are assigned onto the tree leaves. 

 

Q: Given n, the number of leaves, there are (2n-3)!! different trees (plus 
many different ways to assign length to tree edges), which tree can 
best interpret the data? 

A: The tree that gives the maximum likelihood (ML). 

 

In practice, to implement the ML method, two issues we need to address 
1. A model of evolution, which gives the conditional probabilities P(x|y, t) 

2. Method to find the maximum likelihood. For this, any optimization 
method may be utilized, such as 
• Descent gradient 

• Simulated annealing 

• Genetic algorithm 
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Models of evolution 

 

 Independence assumption: mutations occur independently at different positions. 

Therefore,   

P(x|y, t) =  u P(xu|yu, t), 

 

where P(xu|yu, t) is the probability that residue xu in sequence x mutates to residue yu in sequence y over 
time t. 

 

multiplicative assumption:  

 

 P(b|a, t +  t) =   c P(c|a, t)·P(b|c, t). 

 

For DNA sequences, probabilities for all possible mutations among four nucleotides during a given time 
period t form a 4 by 4 matrix 

 

 

 

 

 

 

 

 

And, we have multiplicative property for these matrices 

 

S(t) ·S(t) = S(t + t). 

P(A|A, t) P(A|C, t) P(A|G, t) P(A|T, t) 

P(C|A, t) P(C|C, t) P(C|G, t) P(C|T, t) 

P(G|A, t) 

P(T|A, t) 

P(G|C, t) 

P(T|C, t) 

P(G|G, t) P(G|T, t) 

P(T|T, t) P(T|G, t) 

S(t) = 
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For each P(b|a, t) in the substitution matrix S(t), it is reasonable to assume that no mutation 

can occur at zero time interval: 

• P(a|a, 0) = 1 

• P(b|a, 0) = 0. 

That is, 

 

 

 

Further, let’s assume that P(b|a, t) over a infinitesimal interval t is proportional 

to t by a constant r, called mutation rate: 

P(b|a, t) = r t. 

Jukes-Cantor model for DNA sequences assumes that all nucleotide mutations 

have the same rate.  That is, 
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S(t)= t  I + R t 
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Therefore,  

S(t + t) = S(t) ·S(t) = S(t) ·[I + Rt] 

 

[S(t + t) - S(t)] /t = S(t)·R 

 

S’(t) = S(t)·R   when t  0. 

 

Solving the differential equations, we have  

• P(a|a, t) = ¼ (1+ 3e -4rt)    for a  {A,C, G, T} 

• P(b|a, t) = ¼ (1- e -4rt)       for ab, a and b {A,C, G, T} 

 

In this model,  when t = , P(b|a, ) = ¼. That is, the nucleotide 

equilibrium frequencies are all equal.  



CISC636, F16, Lec15, Liao 7 

 

Kimura model for DNA sequences assumes different rates for transitions (AG 

and C  T) and transversions (A  T, G  T, A  C, and C  G).   

That is, 

 

 

 

 

 
Similar models are proposed for mutations among amino acids. 

If we were able to quantify the “time” as how many number mutations 

have occurred, the substitute matrices in those models would 

correspond to PAM matrices at respective times. 
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Maximum Likelihood 
• The case of two sequences aligned with no gaps 
P( x1, x2|T, t1, t2) =  u=1 to N P( x1

u, x
2

u|T, t1, t2)  

 

• Let  x1 = CCGGCCGCGCG  

               x2 = CGGGCCGCCCG 

 

P(C,C| T, t1, t2) =   P(C|A, t2) P(C|A, t1) P(A) 

              + P(C|C, t2) P(C|C, t1) P(C) 

                                + P(C|G, t2) P(C|G, t1) P(G) 

                                + P(C|T, t2) P(C|T, t1) P(T) 

                         = ¼ [3  ¼ (1- e -4rt1)  ¼ (1- e -4rt2) +  

                                 ¼ (1+3 e -4rt1)  ¼ (1+3 e -4rt2) ] 

                      = 1/16 (1+3 e -4r(t1 +t2)). 

P(G,G| T, t1, t2) = 1/16 (1+ 3 e -4r(t1 +t2)). 

 

P(C,G| T, t1, t2) = 1/16 (1- e -4r(t1 +t2)). 

 

Therefore, for an alignment that has n1 identical sites and n2 
mutational sites, we have 

 

P( x1, x2|T, t1, t2) = 1/ 16n1+n2 (1+3 e -4r(t1 +t2))n1  (1- e -4r(t1 +t2))n2, 

 

which is a function of edge lengths in tree T. 

 

 
 

t1 
t2 

x1 x2 
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In general, the probability can be computed by working up 

the tree from the leaves using post-order traversal. This is 

done by Felsenstein’s algorithm (1981). 

  

Once the probability is available, optimizing the assignments 

of edge lengths t in the tree amounts to  

 

 

 

 

Where tm is the tree length assignment that maximize the 

likelihood.  

 

 

 t 

 

 P 

tm 

= 0 
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How to optimize tree topology? 

– Discrete structure, therefore cannot take derivatives. 

 

Basic strategy for searching the tree space 

– A tree generation algorithm that can generate trees 

– Assess the likelihood 

• Accept  

• Reject 

 

A genetic algorithm implementation [Matsuda 1998] 
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Genetic algorithm 

Input 
– P, the population,  

– r: the fraction of population to be replaced,  

– f, a fitness,  

– ft, the fitness_threshold,  

– m: the rate for mutation. 

Initialize population (randomly) 

Evaluate: for each h in P, compute Fitness(h) 

While [Maxh f(h)] < ft 

 do 
1. Select 

2. Crossover 

3. Mutate 

4. Update P with the new generation Ps  

5. Evaluate:  f(h) for all h  P 

Return the h in P that has the best fitness 
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Branch exchange in a phylogenetic tree 
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Key components for implementing genetic 

algorithms 

– Representing hypotheses (which are the trees here) 

• New Hampshire format 

(A,(F,(C,(B,D)))) 

– Genetic operators 

• Crossover:  

– Single 

– Two point 

– uniform 

• Mutation: point 

– Fitness function: we use the likelihood computed for 

each tree using 

 

F C B D A 
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Blanchette, O;Keefe & Benuskova, 2012 
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Blanchette, O;Keefe & Benuskova, 2012 
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More advanced topics in phylogenetic analysis 

– Different heuristics for sampling the tree space 

• Monte Carlo 

• … 

– More realistic evolutionary models 

• With gaps 

• Non-uniform: different rates at different sites 

• … 

– Using different data sets and reconciliation 

• Sequences 

• Gene positions -> genome rearrangement [Nadeau & Taylor 

1984, PNAS 81:814-818, Pavzner, Sankoff, …]   

• … 
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