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Profile HMM for a family of sequences

Applications of HMM’s

* Given a family of sequences, Olzdl...O}(|, build a hidden Markov
model that best fits to this family-->Problem 3

* Correct multiple alignment is given--> Problem 3, path known
* MA built from structural information

* MA obtained from other sequence based alignment procedures

* Alignment is not assumed--> Problem 3, path not known (B-W)

* Use the obtained model to:

» Score potential matches of new sequences-->Problem 1

* Align new sequences--> Problem 2
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Profile HMM: Correct alighment assumed

HMM construction

T AG---C O

e 2

Example: Assume MA given 7 i f}fé i (': ((;: 83

(columns marked with +) "~ GLV. C O
“x\ + + +

* Segments of family where an alignment exists are produced by
MATCH STATES

Begin — M, {Mz - —» My — End

* Generation probabilities are position dependent!

* In previous example, K=3
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Profile HMM: Correct alignment assumed

* Handling insertions: Portion of the sequences that are not aligned
---> Add INSERT STATES

AG--- C O]
. : AG -C O
Example: Assume MA given A-CACIC O

(columns marked with +)

- GLV[- ¢ oOf

+ + +

* To cope with all possibilities for insertions, an insert state
should be added after each match state

State I;_inserts sequence just after match state M, (i.e.. aligned column k)

O'--> M,M,M;
O?%--> M| M,1,1,M;
0’--> M, ? State M, 1s skipped

\
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Profile HMM: Correct alignment assumed

* Handling deletions: Portion of the sequences that “skips™ the align-
ment---> Add SILENT (DELETE) STATES .

.- AG---C O
Example: Assume MA given ol iG’é g (': g (())%;
(columns marked with +) o SIGLV- C O

N + + + il

T

* To cope with all possibilities for deletions
» Connect all possible match states (big complexity)

* Add silent states (less complexity, but loss of generality)-->NO EMISSION

State Db skips match state Mb (i.e., aligned column k)

Sl 4.\

Begin — M, M, > .. End
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Profile HMM: Correct alignment assumed
Resulting HMM (Profile HMM)

* Notice we have added transitions between insert and delete states

-7 AG--- C O MM,M;
Example: Assume MA given -~ AGAG - C 03 MM, 1, M
(columns marked with +) - A- CACC 04 M, D, 1L1hM;5
NN -GLV- C O DM,LIL,M;
SN+ + +

Javier Garcia-Frias
CISC636, F16, Lec12, Liao



Profile HMM: Correct alignment assumed

Key idea of profile HMM

* Transition and emission probabilities capture specific information
about each position in the multiple alignment of the whole family

+ Profile HMM=Statistical model representing the family

Questions
* How do we build the profile HMM that best fits to a given family?
-->Problem 3 (simplified)

* How do we detect potential membership in this family (for new
sequences)? --> Problem 1

* How do we align a new sequence? --> Problem 2

Javier Garcia-Frias
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Parameterization of profile HMM’s: Correct alignment assumed

Profile HMM parametrization (simplified Problem 3)
* Model length

* Length (and structure) completely defined when we decide
which MA columns should be assigned to match states
« Manual construction

* Heuristic construction: e.g., column aligned if proportion of gaps
is less than a threshold

* More sophisticated methods

e Parameter estimation

* Alignment 1s given-->Path through model is given for any
sequence

* Apply solution to Problem 3 when path is given (just count
events)

Javier Garcia-Frias
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Parameterization of profile HMM’s: Correct alignhment assumed

Previous example

T AG--- C O MM,M;
MA given o AGAG - C Oi M1MalalaMs
. \ A-CACC O] MD,LILM;y
(columns marked with +) N - GLV- C 0% DMLLM;
'\.\ +

Begin — M, M) — = M, End
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Parameterization of profile HMM’s: Correct alignment assumed

Emission probabilities: Estimate from number of emissions

N(A|M|)=3  N(other|M,)=0

Iy, I, I5 are not used

N(AM,)=3  N(other]M,)=0 |[N(A[I,)=2 N(C|I,)=2 N(G|I,)=1

N(C|M3)=4  N(other|M3)=0 |N(L|I;)=1 N(V|I;)=1 N(other|l,)=0

Transition probabilities: Estimate from number of transitions

N(M|[B)=3  N(Dy[B)-I N(L,[Dy)=1

NM; M )=3  N(D,M))=1 N(L,|I))=4 N(M;|l,)=3
N(M;[M,)=1  N(I,[M;)=2
N(E|M;)=3

e If number of sequences is not high enough, estimation should be
modified

Javier Garcia-Frias
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Membership in a profile HMM

Detection of potential membership, for a new sequence,
in family defined by a profile HMM (Problem 1)

* Apply forward equation

* Since P(O|M) is length dependent, usually scoring function is
modified

P(O|M)
P(O|S)

Scoring=log

S 1s called “standard model™": Model to use if sequences were
independently distributed

+ Other statistical approaches can also be used to improve the scoring
system
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Multiple alignment using profile HMM’s

No alignment is assumed

* From an initially unaligned family of sequences, jointly perform:
* Profile HMM estimation

* Alignment estimation

1. Initialization
* Choose length of profile HMM and initialize parameters

2. Training
* Estimate parameters of the profile HMM

* Path not known (no alignment)--> Problem 3 (Baum-Welch)

3. Alignment
 Align all sequences using Viterbi algorithm (Problem 2)

Javier Garcia-Frias
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Interaction profile HMM (ipHMM)

o

OaVaC;

Friedrich et al, Bioinformatics 2006
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Can measure the
log-likelihood of the
sequence, given the

model:

logP (x|6)

protein sequence, x



GENSCAN (generalized HMMs)
e Chris Burge, PhD Thesis *97, Stanford

* Four components
— A vector z of initial probabilities
— A matrix T of state transition probabilities
— A set of length distribution f
— A set of sequence generating models P

e Generalized HMMs:

— at each state, emission is not symbols (or residues),
rather, it is a fragment of sequence.

— Modified viterbi algorithm
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http://genes.mit.edu/GENSCAN.html




* Initial state probabilities

— As frequency for each functional unit to occur
In actual genomic data. E.g., as ~ 80% portion
are non-coding intergenic regions, the initial
probability for state N is 0.80

 Transition probabilities
o State length distributions
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 Training data
— 2.5 Mb human genomic sequences

— 380 genes, 142 single-exon genes, 1492 exons
and 1254 introns

— 1619 cDNAS
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Open areas for research

» Model building

— Integration of domain knowledge, such as structural
Information, into profile HMMs

— Meta learning?
 Biological mechanism
DNA replication
« Hybrid models
— Generalized HMM
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TMMOD: An improved hidden Markov model for
predicting transmembrane topology
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TMHMM by Krogh, A. et al JMB 305(2001)567-580

Non-cytoplasmic side

Cytoplasmic side

Accuracy of prediction for topology: 78%
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Data Correct Correct Sens- Speci-
Mod. Reg. set topology location itivity ficity
(a) 65 (78.3%) 67 (80.7%) 97.4% 97.4%
TMMOD 1 (b) S-83 51 (61.4%) 52 (62.7%) 71.3% 71.3%
(c) 64 (77.1%) 65 (78.3%) 97.1% 97.1%
(a) 61 (73.5%) 65 (78.3%) 99.4% 97.4%
TMMOD 2 (b) S-83 54 (65.1%) 61 (73.5%) 93.8% 71.3%
(c) 54 (65.1%) 66 (79.5%) 99.7% 97.1%
(a) 70 (84.3%) 71 (85.5%) 98.2% 97.4%
TMMOD 3 (b) S-83 64 (77.1%) 65 (78.3%) 95.3% 71.3%
(c) 74 (89.2%) 74 (89.2%) 99.1% 97.1%
64 (77.1%) 69 (83.1%) 96.2% 96.2%

TMHMM S-83
(85.5%) (88.0%) 98.8% 95.2%

PHDtm S-83
(a) 117 (73.1%) 128 (80.0%) 97.4% 97.0%
TMMOD 1 (b) S-160 92 (57.5%) 103 (64.4%) 77.4% 80.8%
(c) 117 (73.1%) 126 (78.8%) 96.1% 96.7%
(a) 120 (75.0%) 132 (82.5%) 98.4% 97.2%
TMMOD 2 (b) S-160 97  (60.6%) 121 (75.6%) 97.7% 95.6%
(c) 118 (73.8%) 135 (84.4%) 98.4% 97.2%
(a) 120 (75.0%) 133 (83.1%) 97.8% 97.6%
TMMOD 3 (b) S-160 110 (68.8%) 124 (77.5%) 94.5% 98.1%
(c) 135 (84.4%) 143 (89.4%) 98.3% 98.1%
TMHMM S-160 123 (76.9%) 134 (83.8%) 97.1% 97.7%
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Proteins Interact via Domains

Protein Protein

X ( ‘ Residues at

X = ) interface tend to be
more conserved
due to selection
pressure during

Chemical bonds
are formed
between amino

aCidS across evolution.
Interface at two

Interacting

proteins. Domain A Domain B

— —
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Profile Hidden Markov Models capturing interaction

* P(x|0) : probability that sequence x contains a domain described by the model 6.
 Viterbi algorithm can align x against the model to annotate interacting residues.

wle k W

N, O—— ¥
0 6 @ protein sequence, X

Friedrich et al, Bioinformatics 2006
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Capture long range correlation with HMM
. hotspots
(Kern, Gonzalez, Liao, Shanker, 2013) / l
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Fig. 4 Pseudocode of the recursive stage of the ETB-Viterbi algorithm.

Initialization: wo(0) = 1, ve(0) =0fork = 0
ej(zi)mazy vk (i — 1)ag;), index 6 7 8 17 18
. . Jjisnota hotspot state sequence YV T D A S
Recursion: wi(t) = _ -
€;(z; )mazy (vg (i — 1)ax;) index state i
+C * 8(x;,x;), jis a hotspot state -1 A
ptri(j) = argmazi(vi(i — 1)ag;) M -\'
Termination:  P(z, m+) = mazk(ve(L)aro); 5 ni \
wp* = argmazy (ve(L)agg) M. \ -
Traceback: i 1% = ptrg(mi+) 1
D
Fig. 3. The ETB-Vikerbi algorithm — 1 =
for i =: 0 to length of protein x: M \
for j =: 0 to number of states in HMM: 7 ni * )
mar =: () M. \I
ptr =: null 1
for iz =: 0 to number of states in HMM: D
if v(i — 1) > max o -
mazx =: vg(i — 1)ag; . . : ! ! !
pir = k —
End if I \l
End for M. . B
v;(i) =: maz 18 ni ) \
ptr;(i) =: ptr H.i. \
if j is a hotspot state -
traceback following ptr;(i) until a hotspot (j°,1') D
v;(§) = v (i) + C » S(xh, z.) :
End if
End for
End for Fig. 5. A segment of the dynamic programming table for ipHMM. The

lines show the path of an early traceback, with M; states defined as
hotspots. When hotspot (18, 17) is handled on the bottom right, traceback is
performed until the previous hotspot, (6, 7), is reached.
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Fig. 6. The improvement made by the ETB-Viterbi algorithm on the real
data and the Top 1 simulated dataset.
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