CISC 636 Computational Biology \& Bioinformatics

 (Fall 2016)

 (Fall 2016)}

Hidden Markov Models (III)

- Viterbi training
- Baum-Welch algorithm
- Maximum Likelihood
- Expectation Maximization

Model building

- Topology
- Requires domain knowledge
- Parameters
- When states are labeled for sequences of observables
- Simple counting (Maximum Likelihood):

$$
\mathrm{a}_{\mathrm{kl}}=\mathrm{A}_{\mathrm{kl}} / \Sigma_{1}, \mathrm{~A}_{\mathrm{kl}}, \text { and } \mathrm{e}_{\mathrm{k}}(\mathrm{~b})=\mathrm{E}_{\mathrm{k}}(\mathrm{~b}) / \Sigma_{\mathrm{b}}, \mathrm{E}_{\mathrm{k}}\left(\mathrm{~b}{ }^{\prime}\right)
$$

- When states are not labeled Method 1 (Viterbi training)

1. Assign random parameters
2. Use Viterbi algorithm for labeling/decoding
3. Do counting to collect new a_{kl} and $\mathrm{e}_{\mathrm{k}}(\mathrm{b})$;
4. Repeat steps 2 and 3 until stopping criterion is met. Method 2 (Baum-Welch algorithm)

Baum-Welch algorithm (Expectation-Maximization)

- An iterative procedure similar to Viterbi training
- Probability that a_{kl} is used at position i in sequence j .

$$
\mathrm{P}\left(\pi_{\mathrm{i}}=\mathrm{k}, \pi_{\mathrm{i}+1}=1 \mid \mathrm{x}, \theta\right)=\mathrm{f}_{\mathrm{k}}(\mathrm{i}) \mathrm{a}_{\mathrm{k} 1} \mathrm{e}_{1}\left(\mathrm{x}_{\mathrm{i}+1}\right) \mathrm{b}_{1}(\mathrm{i}+1) / \mathrm{P}\left(\mathrm{x}^{\mathrm{j}}\right)
$$

Calculate the expected number of times that is used by summing over all position and over all training sequences.

$$
\mathrm{A}_{\mathrm{kl}}=\Sigma_{\mathrm{j}}\left\{\left(1 / \mathrm{P}\left(\mathrm{x}^{\mathrm{j}}\right)\left[\Sigma_{\mathrm{i}} \mathrm{f}_{\mathrm{k}}{ }^{\mathrm{j}}(\mathrm{i}) \mathrm{a}_{\mathrm{kl}} \mathrm{e}_{1}\left(\mathrm{x}_{\mathrm{i}+1}\right) \mathrm{b}_{\mathrm{l}}^{\mathrm{j}(\mathrm{i}+1)}\right]\right\}\right.
$$

Similarly, calculate the expected number of times that symbol b is emitted in state k .

$$
\mathrm{E}_{\mathrm{k}}(\mathrm{~b})=\Sigma_{\mathrm{j}}\left\{\left(1 / \mathrm{P}\left(\mathrm{x}^{\mathrm{j}}\right)\left[\Sigma_{\left\{\mathrm{i} \mid \mathrm{x} \mathrm{x}^{\mathrm{i}}{ }^{\mathrm{j}}=\mathrm{b}\right\}} \mathrm{f}_{\mathrm{k}}^{\mathrm{j}}(\mathrm{i}) \mathrm{b}_{\mathrm{k}}^{\mathrm{j}}(\mathrm{i})\right]\right\}\right.
$$

CISC636, F16, Lec 11, Liao

Maximum Likelihood

Define $\mathrm{L}(\theta)=\mathrm{P}(\mathrm{x} \mid \theta)$
Estimate θ such that the distribution with the estimated θ best agrees with or support the data observed so far.

$$
\theta^{\mathrm{ML}}=\operatorname{argmax} \mathrm{L}(\theta)
$$

θ
E.g. There are red and black balls in a box. What is the probability P of picking up a black ball?
Do sampling (with replacement).

Maximum Likelihood

Define $\mathrm{L}(\theta)=\mathrm{P}(\mathrm{x} \mid \theta)$
Estimate such that the distriibution with the estimated best agrees with or supports the data observed so far.
$\theta{ }^{\mathrm{ML}}=\operatorname{argmax} \theta \mathrm{L}(\theta)$
When $L(\theta)$ is differentiable,

$$
\frac{\partial L(\theta)}{\partial \theta}_{\mid \theta^{M L}}=0
$$

For example, want to know the ratio: \# of blackball/\# of whiteball, in other words, the probability P of picking up a black ball. Sampling (with replacement):

$\operatorname{Prob}($ iid $)=p^{9}(1-\mathrm{p})^{91}$
Likelihood $\mathrm{L}(\mathrm{p})=\mathrm{p}^{9}(1-\mathrm{p})^{91}$.
$\frac{\partial L(p)}{\partial P}=9 p^{8}(1-p)^{91}-91 p^{9}(1-p)^{90}=0$

100
times

Counts: whiteball 91, blackball 9
$\Rightarrow P^{M L}=9 / 100=9 \%$. The ML estimate of P is just the frequency.
CISC636, F16, Lec 11, Liao

A proof that the observed frequency -> ML estimate of probabilities for polynomial distribution

Let Counts n_{i} for outcome i
The observed frequencies $\theta_{i}=n_{i} / N$, where $N=\sum_{i} n_{i}$ If $\theta_{i}{ }^{\mathrm{ML}}=\mathrm{n}_{\mathrm{i}} / \mathrm{N}$, then $\mathrm{P}\left(\mathrm{n} \mid \theta^{\mathrm{ML}}\right)>\mathrm{p}(\mathrm{n} \mid \theta)$ for any $\theta \neq \theta^{\mathrm{ML}}$

Proof:

$\log \frac{P\left(n \mid \theta^{n L}\right)}{P(n \mid \theta)}=\log \frac{\prod_{i}\left(\theta_{i}^{M L}\right)^{n_{i}}}{\prod_{i}\left(\theta_{i}\right)^{n_{i}}}=\log \prod_{i}\left(\frac{\theta_{i}^{n L}}{\theta_{i}}\right)^{n_{i}}$

$$
\begin{aligned}
& =\sum_{i} n_{i} \log \left(\frac{\theta_{i}^{M L}}{\theta_{i}}\right)=\mathrm{N} \sum_{i} \frac{n_{i}}{N} \log \left(\frac{\theta_{i}^{M L}}{\theta_{i}}\right)=\sum_{i} \theta_{i}^{M L} \log \left(\frac{\theta_{i}^{M L}}{\theta_{i}}\right) \\
& =\mathrm{H}\left(\theta^{M L} \| \theta\right) \geq 0
\end{aligned}
$$

Maximum Likelihood: pros and cons

- Consistent, i.e., in the limit of a large amount of data, ML estimate converges to the true parameters by which the data are created.
- Simple
- Poor estimate when data are insufficient.
e.g., if you roll a die for less than 6 times, the ML estimate for some numbers would be zero.

Pseudo counts:

$$
\theta_{i}=\frac{n_{i}+\alpha_{i}}{N+A},
$$

where $\mathrm{A}=\sum_{\mathrm{i}} \alpha_{\mathrm{i}}$

Conditional Probability and Join Probability

| 1 | 1 | 2 | 2 | 2 | 2 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\mathrm{P}($ one $)=5 / 13$
$P($ square $)=8 / 13$
$P($ one, square $)=3 / 13$
$\mathrm{P}($ one \mid square $)=3 / 8=\mathrm{P}($ one, square $) / \mathrm{P}($ square $)$

In general, $\quad \mathrm{P}(\mathrm{D}, \mathrm{M})=\mathrm{P}(\mathrm{D} \mid \mathrm{M}) \mathrm{P}(\mathrm{M})=\mathrm{P}(\mathrm{M} \mid \mathrm{D}) \mathrm{P}(\mathrm{D})$
=> Baye's Rule:

$$
P(\mathrm{M} \mid \mathrm{D})=\frac{P(D \mid M) P(M)}{P(D)}
$$

$$
P(\text { One } \mid \text { Black })=\frac{P(\text { Black } \mid \text { One }) P(\text { One })}{P(\text { Black } \mid \text { One }) P(\text { One })+P(\text { Black } \mid \text { Two }) P(\text { Two })}
$$

$$
=\frac{\left(\frac{3}{5}\right)\left(\frac{5}{13}\right)}{\left(\frac{3}{5}\right)\left(\frac{5}{13}\right)+\left(\frac{6}{8}\right)\left(\frac{8}{13}\right)}=\frac{1}{3},
$$

CISC636, F16, Lec 11, Liao

Conditional Probability and Conditional Independence

$$
\begin{aligned}
P(\text { One }) & =\frac{5}{13} \\
P(\text { One } \mid \text { Square }) & =\frac{3}{8} \\
P(\text { One } \mid \text { Black }) & =\frac{3}{9}=\frac{1}{3} \\
P(\text { One } \mid \text { Square } \cap \text { Black }) & =\frac{2}{6}=\frac{1}{3} \\
P(\text { One } \mid \text { White }) & =\frac{2}{4}=\frac{1}{2} \\
P(\text { One } \mid \text { Square } \cap \text { White }) & =\frac{1}{2} .
\end{aligned}
$$

So One and Square are not independent, but they are conditionally independent given Black and given White.

CISC636, F16, Lec 11, Liao

Baye's Rule:

$$
P(\mathrm{M} \mid \mathrm{D})=\frac{P(D \mid M) P(M)}{P(D)}
$$

Example: disease diagnosis/inference P(Leukemia | Fever) = ?
$P($ Fever | Leukemia $)=0.85$
$P($ Fever $)=0.9$
$P($ Leukemia $)=0.005$
$\mathrm{P}($ Leukemia | Fever $)=\mathrm{P}(\mathrm{F} \mid \mathrm{L}) \mathrm{P}(\mathrm{L}) / \mathrm{P}(\mathrm{F})=0.85 * 0.01 / 0.9=$ 0.0047

Bayesian Inference Maximum a posterior estimate

$$
\theta^{M A P}=\underset{\theta}{\arg \max } P(\theta \mid \mathrm{x})
$$

Expectation Maximization

$$
\begin{gathered}
\mathrm{P}(x, y \mid \theta)=P(y \mid x, \theta) P(\mathrm{x} \mid \theta) \\
P(x \mid \theta)=P(x, y \mid \theta) / P(y \mid x, \theta) \\
\sum_{y} P\left(y \mid x, \theta^{t}\right)\left(\begin{array}{l}
\log P(x \mid \theta)=\log P(x, y \mid \theta)-\log P(\mathrm{y} \mid \mathrm{x}, \theta) \\
\log P(x \mid \theta)=\sum_{y} P\left(y \mid x, \theta^{t}\right) \log P(x, y \mid \theta)-\sum_{y} P\left(y \mid x, \theta^{t}\right) \log P(y \mid \mathrm{x}, \theta) \\
Q\left(\theta \mid \theta^{t}\right)=\sum_{y} P\left(y \mid x, \theta^{t}\right) \operatorname{logP}(\mathrm{x}, \mathrm{y} \mid \theta) \\
\log P(x \mid \theta)-\log P\left(x \mid \theta^{t}\right) \\
=Q\left(\theta \mid \theta^{t}\right)-Q\left(\theta^{t} \mid \theta^{t}\right)+\sum_{y} P\left(y \mid x, \theta^{t}\right) \log \frac{P\left(y \mid x, \theta^{t}\right)}{P(y \mid x, \theta)} \\
\geq Q\left(\theta \mid \theta^{t}\right)-Q\left(\theta^{t} \mid \theta^{t}\right) \\
\theta^{t+1}=\underset{\theta}{\arg \max } Q\left(\theta \mid \theta^{t}\right) \\
\text { CISC636, F16, Lec11, Liao }
\end{array} \quad\right. \text { Maximization }
\end{gathered}
$$

EM explanation of the Baum-Welch algorithm

We like to maximize by choosing θ

$$
P(x \mid \theta)=\sum_{\pi} P(x \mid \pi, \theta)
$$

$$
Q\left(\theta \mid \theta^{t}\right)=\sum_{\pi} P\left(\pi \mid x, \theta^{t}\right) \log P(x, \pi \mid \theta)
$$

$$
P(x, \pi \mid \theta)=\prod_{k=1}^{M} \prod_{b}\left[e_{k}(b)\right]^{E_{k}(b, \pi)} \prod_{k=0}^{M} \prod_{l=1}^{M} a_{k l}^{A_{k l}(\pi)},
$$

$$
Q\left(\theta \mid \theta^{t}\right)=\sum_{\pi} P\left(\pi \mid x, \theta^{t}\right) \times
$$

$$
\left[\sum_{k=1}^{M} \sum_{b} E_{k}(b, \pi) \log e_{k}(b)+\sum_{k=0}^{M} \sum_{l=1}^{M} A_{k l}(\pi) \log a_{k l}\right] .
$$

EM Explanation of the Baum-Welch algorithm

$$
E_{k}(b)=\sum_{\pi} P\left(\pi \mid x, \theta^{t}\right) E_{k}(b, \pi) \text { and } A_{k l}=\sum_{\pi} P\left(\pi \mid x, \theta^{t}\right) A_{k l}(\pi)
$$

$Q\left(\theta \mid \theta^{t}\right)=\sum_{k=1}^{M} \sum_{b} E_{k}(b) \log e_{k}(b)+\sum_{k=0}^{M} \sum_{l=1}^{M} A_{k l} \log a_{k l}$.

E-term

A-term
A-term is maximized if
E-term is maximized if

$$
\begin{aligned}
& a_{k l}^{E M}=\frac{A_{k l}}{\sum_{l^{\prime}} A_{k l^{\prime}}} \\
& e_{k}^{E M}(b)=\frac{l^{\prime} E_{k}(b)}{\sum_{b^{\prime}} E_{k}\left(b^{\prime}\right)}
\end{aligned}
$$

