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Hidden Markov Models (III) 
- Viterbi training 

- Baum-Welch algorithm 

- Maximum Likelihood 

- Expectation Maximization 



CISC636, F16, Lec11, Liao 

Model building 
- Topology 

- Requires domain knowledge 

- Parameters 

- When states are labeled for sequences of observables 

- Simple counting (Maximum Likelihood):  

akl = Akl / l’Akl’ and ek(b) = Ek(b) /  b’Ek(b’) 

 

- When states are not labeled 

   Method 1 (Viterbi training) 

 1. Assign random parameters 

 2. Use Viterbi algorithm for labeling/decoding  

 2. Do counting to collect new akl and ek(b); 

 3. Repeat steps 2 and 3 until stopping criterion is met. 

   Method 2 (Baum-Welch algorithm) 
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Baum-Welch algorithm (Expectation-Maximization) 

• An iterative procedure similar to Viterbi 
training 

• Probability that akl is used at position i in sequence j.  

 

 P(πi = k, πi+1= l | x,θ ) = fk(i) akl el (xi+1) bl(i+1) / P(xj) 

 

   Calculate the expected number of times that is used by 
summing over all position and over all training sequences. 

 

Akl = j {(1/P(xj) [i fk
j(i) akl el (x

j
i+1) bl

j(i+1)] } 

 

   Similarly, calculate the expected number of times that symbol 
b is emitted in state k. 

 

Ek(b) =j {(1/P(xj) [{i|x_i^j = b} fk
j(i) bk

j(i)] } 
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Maximum Likelihood 

Define L() = P(x| ) 

Estimate  such that the distribution with the 
estimated  best agrees with or support the 
data observed so far. 

 

ML = argmax L() 

                 

E.g. There are red and black balls in a box. What is 
the probability P of picking up a black ball? 

Do sampling (with replacement). 



Maximum Likelihood 

 
Define L() = P(x| ) 

Estimate such that the distriibution with the estimated best agrees with or supports the 

data observed so far. 

 

   ML= argmax  L() 

When L() is differentiable,  

 

 

For example, want to know the ratio: # of blackball/# of whiteball, in other words, the 

probability P of picking up a black ball.  Sampling (with replacement): 

 

 

 

 

Prob ( iid)  =  p9 (1-p) 91 

Likelihood L(p) = p9(1-p)91. 

 

 

 

=> PML = 9/100 = 9%.   The ML estimate of P is just the frequency. 
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A proof that the observed frequency -> ML estimate of 

probabilities for polynomial distribution 

 

Let Counts  ni for outcome i 

The observed frequencies i = ni /N, where N = i ni  

If  i 
ML = ni /N, then P(n| ML ) > p(n| ) for any    ML 

 

Proof: 
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Maximum Likelihood: pros and cons 
 

- Consistent, i.e., in the limit of a large amount of data, ML 

estimate converges to the true parameters by which the data 

are created. 

- Simple 

- Poor estimate when data are insufficient. 

e.g., if you roll a die for less than 6 times, the ML estimate 

for some numbers would be zero. 

 

Pseudo counts:  
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Conditional Probability and Join Probability 
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P(one) = 5/13 

P(square) = 8/13 

P(one, square) = 3/13 

P(one | square) = 3/8 = P(one, square) / P(square) 

 

In general,      P(D,M) = P(D|M)P(M) = P(M|D)P(D) 

 

=> Baye’s Rule: ( | ) ( )
(M | D)

( )

P D M P M
P

P D




Conditional Probability and Conditional Independence 
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Baye’s Rule: 

Example: disease diagnosis/inference 
     P(Leukemia | Fever) =  ? 
 
P(Fever | Leukemia) = 0.85 
P(Fever) = 0.9 
P(Leukemia) = 0.005 
P(Leukemia | Fever) = P(F|L)P(L)/P(F) = 0.85*0.01/0.9 = 
0.0047   
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( | ) ( )
(M | D)

( )

P D M P M
P

P D




Bayesian Inference 

Maximum a posterior estimate 

 
 

arg max ( | x)MAP P
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Expectation Maximization 
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EM explanation of the Baum-Welch algorithm 

( | ) ( | , )P x P x


  

( | ) ( | , ) log ( , | )t tQ P x P x


     

We like to 

maximize by 

choosing  

But state path  is 

hidden variable.  Thus, 

EM. 
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EM Explanation of the Baum-Welch algorithm 

A-term E-term 

A-term is maximized if  

 

E-term is maximized if  
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