CISC 636 Computational Biology &
Bioinformatics
(Fall 2016)

Hidden Markov Models (111)

- Viterbi training

- Baum-Welch algorithm

- Maximum Likelihood

- Expectation Maximization
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Model building
- Topology
- Requires domain knowledge
- Parameters
- When states are labeled for sequences of observables
- Simple counting (Maximum Likelihood):
8y = A | ZpAy and e (b) = Ey (D) /X By (b7)

- When states are not labeled
Method 1 (Viterbi training)
1. Assign random parameters
2. Use Viterbi algorithm for labeling/decoding
2. Do counting to collect new a,, and e, (b);
3. Repeat steps 2 and 3 until stopping criterion is met.
Method 2 (Baum-Welch algorithm)
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Baum-Welch algorithm (Expectation-Maximization)

* An iterative procedure similar to Viterbi
training
 Probability that a,, Is used at position I in sequence j.

P(m; = K, m,= 1] %,0) = f(i) a & (X;11) by(i+1) / P(x))

Calculate the expected number of times that Is used by
summing over all position and over all training sequences.

A= {(L/P() [Z; TJ(0) ay € (Xyyq) bA(I+1)] }

Similarly, calculate the expected number of times that symbol
b is emitted in state k.

E,(0) =Z; {(1/P() [Zgipx_inj =y (D) bJI(D] }
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Maximum Likelihood
Define L(0) = P(x| 0)
Estimate O such that the distribution with the

estimated 0 best agrees with or support the
data observed so far.

OML = argmax L(0)
0

E.g. There are red and black balls in a box. What is
the probability P of picking up a black ball?

Do sampling (with replacement).
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Maximum Likelihood

Define L(0) = P(x| 6)
Estimate such that the distriibution with the estimated best agrees with or supports the
data observed so far.

0 ML=argmax 6 L(0)
When L(0) is differentiable, oL(6)

For example, want to know the ratio: # of blackball/# of whiteball, in other words, the
probability P of picking up a black ball. Sampling (with replacement):

O @ ® O © @

Prob (iid) = p° (1-p) .
Likelihood L(p) = p°(1-p)°L. 100 Counts: whiteball 91,
times blackball 9

) _9p(t- p) -91p° (- p)? =0

=>PML =9/100 = 9%. The ML estimate of P is just the frequency.
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A proof that the observed frequency -> ML estimate of
probabilities for polynomial distribution

Let Counts n; for outcome i
The observed frequencies 0; = n, /N, where N = >.. n,
If 6, ML=n./N, then P(n|6 ML) > p(n| 6) for any 6 = 6 M-

Proof:

L H(QML)ni o - 0/
P(n|o™) i _ g
DR ) (DR LR

HiML - & gl_'\/”— B ML QI_ML
:Znilog(?)_NZNlog( 7 )—Z@i log( <9i)

— H(O ||6) >0
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Maximum Likelihood: pros and cons

- Consistent, 1.e., in the limit of a large amount of data, ML
estimate converges to the true parameters by which the data
are created.

- Simple

- Poor estimate when data are insufficient.

e.g., If you roll a die for less than 6 times, the ML estimate
for some numbers would be zero.

Pseudo counts: 0 — N+«

" N+A

where A= 2. a;
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Conditional Probability and Join Probability

282880000
1 2 i@ |@

P(one) =5/13

P(square) = 8/13

P(one, square) = 3/13
P(one | square) = 3/8 = P(one, square) / P(square)

In general, P(D,M) = P(D|M)P(M) = P(M|D)P(D)
=> Baye’s Rule: P(D|M)P(M)
P(D)
P(Black|One) P(One)
P(Black|One)P(One) + P(Black|Two)P({Two)
) ]

- RVEE 6, 8 o
(5)(33) +(5)33) 3
CISC636, F16, Lecl11, Liao

P(M|D) =

P(One|Black) =




Conditional Probability and Conditional Independence
© © 6
i 5 o Yo'

P(One) = %

3

P(One|Square) = S
3 1
P(One|Black) = =3
2 1
P(One|Square M Black) = =3
P(One|White) — :21:%

1

P(One|Square N White) = 5

S0 One and Square are not independent, but they are conditionally independent
given Black and given White.
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Baye’s Rule:
P(DIM)P(M)
P(D)

P(M|D) =

Example: disease diagnosis/inference
P(Leukemia | Fever) = ?

P(Fever | Leukemia) = 0.85

P(Fever) =0.9

P(Leukemia) = 0.005

P(Leukemia | Fever) = P(F|L)P(L)/P(F) = 0.85*0.01/0.9 =
0.0047
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Bayesian Inference
Maximum a posterior estimate

O™ =argmax P(6| x)
0
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Expectation Maximization
P(X,y[0)=P(y[x,0)P(x|0)

P(x|0)=P(x,y|0)/ P(y|x,0)
log P(x|8) =log P(x,y|&) —log P(y| X, 6)

2. PyIxe) ( )  Expectation
log P(x|8) =D P(y|x,6)logP(x,y|0)—> P(y|x,6)logP(y|x,6)

Q16" =2 P(y|x8")logP(x,y|6)

log P(x|8)—log P(x|6")

P(y|x 6
P(y|x,0)

=Q(016")-Q(8'[6")+>_P(y|x,6")log

2Q(016)-Q('|¢')

t+1 t . . .
0 =arg g“aXQ(9|9) Maximization
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EM explanation of the Baum-Welch algorithm

Weliketo  px19) =S P(x| 7.0 But state path r Is
maximize by (x16) Z (x| 7.6) hidden variable. Thus,

choosing 6 " EM.
Q(616')=> P(x|x,6")logP(x, 7|6)

P(x,m|f)= 1—[ 1_[[6 (b)]Eﬂb 131—[ Hw‘u(ﬂi

k=1 & k=0 I=1

Q616" = ZP(H |x,8")

I:Z Z Ey(b,m)loger(b) + Z Z Ay () lﬂgak,::l

k=0 I=1
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EM Explanation of the Baum-Welch algorithm

Ev(b)=) P(r|x,00Ei(b,m) and Ay =) P(m|x,0")Au(r).

0(616") = ZZEk(b)logek(bHZZAH log a.

k=1 b k=0 I=1

E-term A-term

A-term is maximized if @ = Zﬁx
|’

E-term is maximized if
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