CISC 320 Introduction to Algorithms
Fall 2005

Lecture 9
Red HBack Trees
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Binary Search Trees (BST)

key[x]: key stored at x.

left[x]: pointer to left child of x.
right[x]: pointer to right child of x.
p[x]: pointer to parent node of x.

binary-search-tree property:
for every node x:
keyly] < keylx] < key[Z]
where y is any node in the left subtree of x, and
zis any node in the right subtree of x.
e.g., two valid BSTs for the keys 2, 3, 4, 5, 7, 8.
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Inorder-tree-walk(x)
if x # nil
then inorder-tree-walk(left[x]);
print key[x];
inorder-tree-walk(right[x]);

It prints all elements in monotonically increasing order, in ©(n) time.

BST Search
Search(T, k)
X = root[T];
if x = nil or k = key[x]
then return x;
if k < key[x]
then return Search(left[x], k)
6 else return Search(right[x], k);

Time: O(h), where h is the tree height.
o for a balanced binary tree, h = Ig(n)
o worst-case: h =n.
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= Rotation

Left rotate
—_—
—-

Right rotate

Note: 1. inorder key ordering is unchanged after rotation: a, x, b, y, ¢

2. rotation takes O(1) time.

Left rotate
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Left-rotate(T,x)
y « right[x] GLeftrotate
right[x] « left[y]
if left[y] # nil
then p[left[y]] < x ¢ a
ply] < pIx]
if p[x] = nil
then root[T] — y
else if x = left[p[x]]
then left[p[x]] — vy
else right[p[x]] <y
lefty] — x
pIX] <y
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Is there a mechanism to automatically rotate
whenever the tree is significantly
unbalanced?
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Red- Black Trees

1. Red-black tree is a binary search tree. Every
node is either red or black.

2. Root is always black
3. Every leaf (nil) must be black
4. If a node is red, then both children are black

5. All paths from any node x to a descendant

leaf have same number of black nodes.

Definition: black-height of a node x is the number of black nodes
(excluding x) on any path from x to a descendant leaf.
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A red-black tree
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Intuition: if a red-black tree contains black nodes only, the tree is
perfectly balanced, i.e., it is a complete binary tree. Presence of red
nodes corrupts the balance, but not much, because of the restrictions
imposed on red nodes.
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Theorem: A red-black tree with n internal nodes has height at most
2 1g(n+1).

proof:

a) for any node X, its black-height denoted as bh(x), there are at
least 2 h¥) — 1 internal nodes under x.

b) if the root r has height h, then h <2 bh(r), because at least
half of the nodes on any path from r to a leaf must be black.
According to a), we have

2600 _1<n
bh(r) < Ig (n+1)
h <2 Ig(n+1).
QED
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Therefore, a red-black tree can never be too
off- balanced. As a result, searching a key in
a red-black tree of n nodes takes

0O(2 Ig(n+1)) time.

How about insert and delete?

More work is needed for these operations
since the red-black tree properties need to be
maintained.
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Insertion

step 1: locate where to insert, via an unsuccessful
search. O(lg n)

step 2: insert. O(1)
new node is assigned red color. why?
- any new node potentially can unbalance the tree
- ifred node gets a red child, RBT is broken.
This alerts us to prevent from continuously
adding nodes at a branch.

step 3: check if red liack free properties are damaged. If
yes, fix it by rotations. O(?)
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RB-Insert(T, z)
) y < nil[T]
X « root[T]
while x # nil[T]
doy«x
if key[z] < key([x]
then x « left[x]
else x « right[x]
plz] —y
Ify = nil[T]
then root[T] «— z
1 else if key[z] < keyly]
then leftly] — z
else rightly] < z
left[z] « nil[T]
right[z] « nil[T]
Color[z] — RED
RB-Insert-Fixup(T, z)
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Case 1: red uncle /®\

new z

a b

. Why C must be black? Because otherwise B and C already broke RBT.

2. Why C has to be red after B and D are changed to black? To maintain the black
height for any node above C, say E.

w

. If Cis not root, its color change may propagate the problem up.

if C is the root, we only need to recolor it as black.
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Case 1: red uncle

new
oy poN
c d e c d e
/ \ z / \
a b a b
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‘ Case 2: right child, black uncle

/é\dy """"""""" ’ dy

| S
a b

1. Does this left rotation at node B make the tree more balanced? Not yet.
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Case 3: left child, black uncle

Note: 1. The right rotation at node C makes the tree
more balanced

2. will not propagate further up.
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Case 4,5 and 6 are just mirror symmetric to
cases 1, 2, and 3 respectively, and can be
similarly handled.
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RB-Insert-Fixup(T, z)
while color[p[z]] = RED
do if p[z] = left[p[p(z]]]
then y « right[p[plz]]]
if color[y] = RED
then color[p[z]] < BLACK
color[y] < BLACK
color[p[p[z]]] — RED
z < plp[z]]
else if z = right[p[z]]
then z — p[z]
LEFT-ROTATE(T, z)
color[p[z]] < BLACK
color[p[p[z]]] — RED
RIGHT-ROTATE(T, plplz]l)
else ( same as then clause with “right” and “left” exchanged)
Color[root[T]] — BLACK
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Time analysis for insertion

RB-Insert-Fixup either removes a red edge by
constant time (cases 2, and 3) or propagates
red edge one level up (never down), at most
to the root, which is the worst case. As a red-
black tree of n internal nodes can not be
higher than O(Ig n), RB-Insert-Fixup runs in
O(lg n) time. Therefore, the total time is

T(n) = O(lg n) + O(lg n) = O(lg n)
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