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CISC 320 Introduction to Algorithms
Fall 2005

Lecture 9
Red- Black Trees 
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Binary Search Trees (BST)
key[x]: key stored at x.
left[x]: pointer to left child of x.
right[x]: pointer to right child of x.
p[x]: pointer to parent node of x.

binary-search-tree property:
for every node x: 

key[y] ≤ key[x] ≤ key[z]
where y is any node in the left subtree of x, and 
z is any node in the right subtree of x.

e.g., two valid BSTs for the keys 2, 3, 4, 5, 7, 8.
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Inorder-tree-walk(x)
1. if x ≠ nil
2. then inorder-tree-walk(left[x]);
3. print key[x];
4. inorder-tree-walk(right[x]);

It prints all elements in monotonically increasing order, in Θ(n) time.

BST Search
Search(T, k)
1. x = root[T];
2. if x = nil or k = key[x]
3. then return x;
4. if k < key[x]
5. then return Search(left[x], k)
6. else return Search(right[x], k);
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Time: O(h), where h is the tree height. 
for a balanced binary tree, h = lg(n)
worst-case: h = n.
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Rotation 

Note: 1. inorder key ordering is unchanged after rotation: a, x, b, y, c

2. rotation takes O(1) time. 
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Left-rotate(T,x)
1. y ← right[x]
2. right[x] ← left[y]
3. if left[y] ≠ nil
4. then p[left[y]] ← x
5. p[y] ← p[x]
6. if p[x] = nil
7. then root[T] ← y
8. else if x = left[p[x]]
9. then left[p[x]] ← y
10. else right[p[x]] ← y
11. left[y] ← x
12. p[x] ← y
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Is there a mechanism to automatically rotate 
whenever the tree is significantly 
unbalanced?  
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Red- Black Trees

1. Red-black tree is a binary search tree. Every 
node is either red or black.

2. Root is always black
3. Every leaf (nil) must be black
4. If a node is red, then both children are black
5. All paths from any node x to a descendant 

leaf have same number of black nodes.
Definition: black-height of a node x is the number of black nodes 

(excluding x) on any path from x to a descendant leaf.
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A red-black tree

Intuition: if a red-black tree contains black nodes only, the tree is 
perfectly balanced, i.e., it is a complete binary tree. Presence of red 
nodes corrupts the balance, but not much, because of the restrictions 
imposed on red nodes.   
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Theorem: A red-black tree with n internal nodes has height at most 
2 lg(n+1).

proof: 
a) for any node x, its black-height denoted as bh(x), there are at 
least 2 bh(x) – 1 internal nodes under x.
b) if the root r has height h, then h ≤ 2 bh(r),  because at least 
half of the nodes on any path from r to a leaf must be black.  
According to a), we have 

2 bh(r) – 1 ≤ n
bh(r) ≤ lg (n+1)
h ≤ 2 lg(n+1). 

QED
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Therefore, a red-black tree can never be too 
off- balanced. As a result, searching a key in 
a red-black tree of n nodes takes 

O(2 lg(n+1)) time.

How about insert and delete? 
More work is needed for these operations 
since the red-black tree properties need to be 
maintained.  



3

CISC320, F05, Lec9,  Liao 13

Insertion
step 1: locate where to insert, via an unsuccessful 
search.  O(lg n)

step 2: insert.  O(1)
new node is assigned red color. why?

- any new node potentially can unbalance the tree
- if red node gets a red child, RBT is broken. 

This alerts us to prevent from continuously
adding nodes at a branch.

step 3: check if red- black- tree properties are damaged. If 
yes, fix it by rotations. O(?) 
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RB-Insert(T, z)
1. y ← nil[T]
2. x ← root[T]
3. while x ≠ nil[T]
4. do y ← x
5. if key[z] < key[x]
6. then x ← left[x]
7. else x ← right[x]
8. p[z] ← y
9. If y = nil[T]
10. then root[T] ← z
11. else if key[z] < key[y]
12. then left[y] ← z
13. else right[y] ← z
14. left[z] ← nil[T]
15. right[z] ← nil[T]
16. Color[z] ← RED
17. RB-Insert-Fixup(T, z)
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Case 1: red uncle

B

A

C

a b

c

D
d e

B

A

C

a b

c

D
d e

1. Why C must be black? Because otherwise B and C already broke RBT.

2. Why C has to be red after B and D are changed to black? To maintain the black 
height for any node above C, say E. 

3. If C is not root, its color change may propagate the problem up.

if C is the root, we only need to recolor it as black.
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Case 1: red uncle 
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Case 2:  right child, black uncle
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1. Does this left rotation at node B make the tree more balanced? Not yet.
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Case 3:  left child, black uncle 
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Note: 1. The right rotation at node C makes the tree  

more balanced

2. will not propagate further up.
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Case 4,5 and 6 are just mirror symmetric to 
cases 1, 2, and 3 respectively, and can be 
similarly handled. 
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RB-Insert-Fixup(T, z)
1. while color[p[z]] = RED
2. do if p[z] = left[p[p[z]]]
3. then y ← right[p[p[z]]]
4. if color[y] = RED
5. then color[p[z]] ← BLACK
6. color[y] ← BLACK
7. color[p[p[z]]] ← RED
8. z ← p[p[z]]
9. else if z = right[p[z]]
10. then z ← p[z]
11. LEFT-ROTATE(T, z)
12. color[p[z]] ← BLACK
13. color[p[p[z]]] ← RED
14. RIGHT-ROTATE(T, p[p[z]])
15. else ( same as then clause with “right” and “left” exchanged)
16. Color[root[T]] ← BLACK
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Time analysis for insertion

RB-Insert-Fixup either removes a red edge by 
constant time (cases 2, and 3) or propagates 
red edge one level up (never down), at most 
to the root, which is the worst case. As a red-
black tree of n internal nodes can not be 
higher than O(lg n), RB-Insert-Fixup runs in 
O(lg n)  time. Therefore, the total time is

T(n) = O(lg n) + O(lg n) = O(lg n)


