Problem: to construct a dynamic set that supports the dictionary operations: search, insert, and delete.

Examples:
- dictionary: word key to definition
- compiler: symbol key to semantic data

Key types:
- Numerical
- Alphabet

Key space: the set of all possible keys.

Can we use array?

Case 1: if keys are integer, directly index into array.
Case 2: if keys are string of alphabets, convert to case 1 by first transforming characters to integers (e.g., ASCII).

Dictionary operations are easily supported in such direct address model.
- Each operation takes $O(1)$ time.
- Problem: key space may be too huge.
 - e.g., names of at most 20 letters => size of key space $= 26^{20} = 2^{100} \approx 10^{28}$
 - In practice, while key space is huge, only a small portion is really used, say a few millions of names in our example.

Hashing

Hash function h

$h: U \rightarrow \{0, 1, ..., m-1\}$

where U is the key space and typically $m << |U|$.

Since m is smaller than $|U|$, h can not be a one-to-one mapping.

Collisions: a collision occurs between keys k_1 and k_2 if $h(k_1) = h(k_2)$.

$h(k_1) = h(k_2)$
Collision resolution by chaining (closed-address)
- Each position in hash table is pointer to head of a linked list.
- To insert elements into the table, add to head of list.

Chained Hash Insert(T, x)
- Insert x at the head of list T[h(key[x])].
- Worst case running time is O(1).

Chained Hash Search(T, k)
- Search for an element with key k in list T[h(k)].
- Worst case running time is proportional to length of list T[h(k)].

Chained Hash Delete(T, x)
- Delete x from the list T[h(key[x])].
- Worst case running time is the time for searching x plus O(1) time for removing it from the list.

Uniform hashing: each key is equally likely to be hashed into any integer [0, ..., m-1].

Load factor α: n/m, where n is the number of keys that will be actually stored in the table. That is, α is the average length of lists. Therefore, average time for search = $O(1 + \alpha)$.
- If $n = O(m)$, then $\alpha = O(1)$.

All dictionary operations can be supported in $O(1)$ time on average.

Open-address hashing
- All elements stored in the array of the hash table (no linked lists).
- More space efficient
- Less flexible: load factor α cannot be larger than 1.
- Rehashing to resolve collisions.
 - If a key K is hashed to position i, which is already occupied, K is rehashed to an alternative location: $\text{rehash}(i+d) = (i+d) \mod m$
 - Where d is an increment computed from K.
 - Linear probing: $d = 1$
 - In linear probing, the alternative to i is the next position $i+1$.
 - When $i+1 = m$ will be mod by m to 0. So rehashing m times will guarantee to probe every slot in the Table.

Example: $h(x) = 5x \mod 8$
 - $h(1055) = 3$
 - $h(1492) = 4$
 - $h(1776) = 0$
 - $h(1812) = 4$
 - $h(1918) = 6$
 - $h(1945) = 5$

Example: $h(x) = 5x \mod 8$, rehash(i) = (i+1) mod 8.
 - $h(1055) = 3$
 - $h(1492) = 4$
 - $h(1776) = 0$
 - $h(1812) = 4$, but $T[4]$ is occupied. Rehash(4) = (4+1) mod 8 = 5, which is empty, so 1812 is stored in $T[5]$.
 - $h(1918) = 6$
 - $h(1945) = 5$, but $T[5]$ is occupied. Rehash(5) = 6, $T[6]$ is also occupied, so 6 is rehashed to 7, which is empty.
Search(T, key)
1. \(i = h(key);\)
2. \(j = 0;\) // counter of rehash
3. \(\text{inc} = \text{hashInc(key);} \) // for a general increment scheme
4. while \((T[i] \neq \text{nil}) \text{ and } j < m\)
5. if \((T[i] = \text{key})\)
6. then return \(i;\) // successful search
7. \(i = \text{rehash}(i, \text{inc});\) // \(i = i+1\) for linear probing
8. \(j = j+1;\)
9. return \(\text{nil};\) // unsuccessful search

Choice of Hash Functions
- Distribute keys uniformly into integer range \([0, 1, \ldots, m]\).
- Low collision rate.
 - Hashing method I: division
 \[h(k) = k \mod m\]
 - Must avoid certain values of \(m\).
 - Powers of 2: If \(m = 2^p, \) \(h(k)\) is \(p\) lowest order bits of \(k.\)
 - \(m = 8 = 2^3,\) \(0 \leq k \leq 128\)
 - \(k = (107) = 1101011, h(k) = 011 = 3\)
 - \(k = (43) = 0101011, h(k) = 011 = 3\)
 - \(\ldots\) \(xxx011,\)
 - there are 16 collisions on \(h(k) = 3.\)
 - Powers of 10, similar argument.
 - Good values for \(m\) are primes not too close to exact power of 2.
- Hashing method II: multiplication
 \[h(k) = \lfloor m(kA \mod 1) \rfloor\]
 where \(A\) is a constant, \(0 < A < 1,\) and \((kA \mod 1)\) is the fractional part of \(kA,\) namely, \(kA - \lfloor kA \rfloor.\)
 - \(A = (\sqrt{5} - 1)/2 \approx 0.6180339887\ldots\)
 - \(m = 10000\)
 - \(h(123456) = \lfloor 10000 \times (123456 \times 0.61803\ldots \mod 1) \rfloor\)
 - \(= \lfloor 10000 \times (76300.0041151\ldots \mod 1) \rfloor\)
 - \(= \lfloor 10000 \times 0.0041151\ldots \rfloor\)
 - \(= 41.\)
 - Optimal choice of \(A\) depends on characteristics of data (Knuth suggests the golden ratio)
 - Choose \(m\) as power of 2.

Summary
- Hash tables are an effective data structure for implementing dictionaries.
- Worst-case: search may take as long as \(\Theta(n)\) time.
- Average-case: \(O(1).\)