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CISC 320 Introduction to Algorithms
Fall 2005

Lecture 8
Hash Tables 
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Problem: to construct a dynamic set that 
supports the dictionary operations: search, 
insert and delete. 

Examples:
dictionary: word key to definition
compiler: symbol key to semantic data
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Key types:
Numerical
Alphabet

Key space: the set of all possible keys.
Recall that we can search a sorted array quickly, so the 

question is

Can we use array?
Case 1: if keys are integer, directly index into array.
Case 2: if keys are string of alphabets, convert to case 1 
by first transforming characters to integers (e.g., ASCII). 
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Dictionary operations are easily supported in 
such direct- address model.

Each operation takes O(1) time.
Problem: key space may be too huge.
e.g., names of at most 20 letters => size of key space 
= 2620 ≈ 2100 ≈ 1028

In practice, while key space is huge, only a small portion 
is really used, say a few millions of names in our 
example. 
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Hashing

Hash function h
h: U → {0, 1, …, m-1}

where U is the key space and typically m << |U|.

Since m is smaller than |U|, h can not be a one-to-one mapping. 

Collisions: a collision occurs between keys k1 and k2 if h(k1) = h(k2).

k1

k2

h(k1) = h(k2)
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Collision resolution by chaining (closed-
address)

Each position in hash table is pointer to head of a 
linked list.
To insert elements into the table, add to head of 
list.

h(k1) = h(k2)= h(k3)

k3 k2 k1i
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Chained- Hash- Insert(T,x)
insert x at the head of list T[h(key[x])].
worst- case running time is O(1).

Chained- Hash- Search(T,k)
search for an element with key k in list T[h(k)].
worst- case running time is proportional to 

length of list T[h(k)].
Chained- Hash- Delete(T,x)
delete x from the list T[h(key[x])].
worst- case running time is the time for 

searching x plus O(1) time for removing it from 
the list.
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Uniform hashing: each key is equally likely to be 
hashed into any integer [0, …, m-1].

load factor α: n/m, 
where n is the number of keys that will be 

actually stored in the table.  That is, α is the average 
length of lists. Therefore,
average time for search = O(1+ α).

If n = O(m), then α = O(1). 

All dictionary operations can be supported in 
O(1) time on average.
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Open-address hashing
all elements stored in the array of the hash table (no linked 
lists).

More space efficient
Less flexible: load factor α can not be larger than 1.

Rehashing to resolve collisions.
If a key K is hashed to position i, which is already occupied, K is 

rehashed to an alternative location:
rehash(i+d) = (i+d) mod m

where d is an increment computed from K. 
Linear probing: d = 1

In linear probing, the alternative to i is the next position i+1.
When i+1 = m will be mod by m to 0. So rehasing m times will 

guarantee to probe every slot in the Table.
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Example: h (x) = 5x mod 8
keys: 1055, 1492, 1776, 1812, 1918, 1945.
h(1055) = 3
h(1492) = 4
h(1776) = 0
h(1812) = 4
h(1918) = 6
h(1945) = 5

1776 1055 1492
1812 1945 1918

0          1         2       3        4       5        6       7
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Example: h (x) = 5x mod 8, rehash(i) = (i+1) mod 8.
keys: 1055, 1492, 1776, 1812, 1918, 1945.
h(1055) = 3
h(1492) = 4
h(1776) = 0
h(1812) = 4, but T[4] is occupied. Rehash(4) = (4+1) 
mod 8 = 5, which is empty, so 1812 is stored in T[5].  
h(1918) = 6
h(1945) = 5, but T[5] is occupied. Rehash(5) = 6, 
T[6] is also occupied, so 6 is rehashed to 7, which is 
empty. 

1776 1055 1492 1812 1918

0          1         2       3        4       5        6       7

1945
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Search(T,key) 
1. i = h(key);
2. j = 0; // counter of rehash 
3. inc = hashInc(key); // for a general increment scheme

4. while (T[i] ≠ nil and j < m)
5. if (T[i] = key) 
6. then return i;  // successful search
7. i = rehash(i, inc); // i = i+1 for linear probing
8. j = j+1; 
9. return nil;  // unsuccessful search
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Theorem 11.6  Given an open-address hash table 
with load factor α = n/m <1, the expected number of 
probes in an unsuccessful search is at most 1/(1- α), 
assuming uniform hashing.

e.g., In a half full table, 1/(1-.5) = 2; In a 90% full table, 
1/(1-.9) = 10. 
Theorem 11.8 Given an open-address hash table 
with load factor α <1, the expected number of 
probes in a successful search is at most 1/ α ln
[1/(1- α)], assuming uniform hashing and assuming 
that each key in the table is equally likely to be 
searched for.

e.g., in a half full table, it’s <1.387; in a 90% full table, 
it’s < 2.559
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Choice of Hash Functions
Distribute keys uniformly into integer range [0, 1, …, m].
Low collision rate.

Hashing method I: division
h(k) = k mod m 

Must avoid certain values of m.
• Powers of 2. If m = 2p, h(k) is p lowest order bits of k. 

e.g., m = 8 =  23, 0 ≤ k ≤ 128
k = (107) = 1101011, h(k) = 011 = 3 
k = (43)   = 0101011, h(k) = 011 = 3

… xxxx011, 
there are 16 collisions on h(k) = 3.

• Powers of 10. similar argument. 
Good values for m are primes not too close to exact power of 2.
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Hashing method II: multiplication
h(k) = └ m(k A mod 1) ┘

where A is a constant, 0< A < 1, and (k A mod 1) is the fractional part of 
kA, namely, kA - └ kA ┘.

e.g., A = (√5 -1) /2 ≈ 0.6180339887…
m = 10000
h(123456) = └10000 x (123456 x 0.61803… mod 1) ┘

= └ 10000 x (76300.0041151.. mod 1) ┘
= └ 10000 x 0.0041151.. ┘
= └ 41.151… ┘
= 41.

Optimal choice of A depends on characteristics of data (Knuth 
suggests the golden ratio)
Choose m as power of 2.
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Summary
Hash tables are an effective data structure for 
implementing dictionaries.
Worst-case: search may take as long as Θ(n) 
time.
Average-case: O(1).


