Problem: Given an array E containing n elements with keys from some linearly ordered set, find an element with the k-th smallest key.

Why this is interesting?
- max, min, median, mean, …
- If the array is ordered (with $O(n \log n)$ time), then $E[k]$ is the answer.
- Can we do better?

```plaintext
findMax(E, n)
1. max = E[0];
2. for (I = 1; I < n; i++)
3. if(max < E[I])
4. max = E[I];
5. return max;
```

It takes $n-1$ comparisons to find the largest key, that is better than $O(n \log n)$.

Is this the best we can do for finding the largest key by comparisons?
Yes.
- For n distinct keys, only one is the largest $\Rightarrow n-1$ losers.
- Each comparison generate only one loser $\Rightarrow n-1$ comparisons needed.
- If there are two or more nonlosers left when the algorithm terminates, it can not be sure it has identified the max.

```
2ndLargest
apply findMax once and remove the max, then apply findMax again.
(n-1) + (n-2) = 2n - 3.
```

```
i-th key
(n -1) + (n-2) + … (n-i)
```

Median $i = n/2$
$$\sum_{i=1 \to n/2} (n-i) = (3/8) n^2 - n/4 \in O(n^2)$$

Note:
- This is even worse than sorting the array first.
- Finding the median seems to the hardest selection problem.
Divide and conquer?
- Simple minded one: partitioning $S \rightarrow S_1$ and S_2, then the median is in the larger set, say S_2, and we gain by ignoring the smaller set. Then we do this recursively on S_2!
- Wait, the median of S_2 is not the median of S.

Selection in worst-case linear time
Algorithm `select(S, k)`
1. Divide the n elements into $n/5$ groups of 5 elements each and at most one group made up of the remaining $n \mod 5$ elements.
2. Find the median of each group.
3. Use select recursively to find the median m^* of $n/5$ medians found in step 2.
4. Partition using m^* as pivot:
 - Compare each key in the sections A and D to $m^*.$
 - Let $S_1 = C \cup \{\text{keys from } A \cup D \text{ that are smaller than } m^\}.$
 - Let $S_2 = B \cup \{\text{keys from } A \cup D \text{ that are larger than } m^\}.$
5. Divide and conquer:
 - if ($k = |S_1| + 1$)
 return m^* // because m^* is the k-th smallest key
 - else if ($k \leq |S_1|$)
 return `select(S1, k);` // the k-th smallest key of S is in S_1, and is the k-th smallest key in $S_1.$
 - else
 return `select(S2, k-|S1|-1);` // the k-th smallest key of S is in S_2, and it is the $k-|S1|-1$ smallest key in $S_2.$

Select: complexity analysis
For simplicity, let $n = 5(2r+1)$ and integer $r > 0$.
1. Find medians of 5 keys: 6 comparisons
2. There are $n/5$ sets: $6(n/5)$
3. Recursively find the median m^* of the medians: $T(n/5)$
4. Compare all keys in section A and D to m^*: $4r$ comparisons.
5. Recursively subset S_1 or S_2: $T(7r+2)$
 - B and C section each has $3r+2$ elements, plus $4r$ elements from A and D, $r \approx n/10$.
 - $T(n) = T(7n/10) + T(n/5) + 1.6n$
 - Parts add up to less than the whole.
 - This implies a decreasing geometric series when untangle the recurrence equation.

Important observation:
- $(n/5) + (7n/10) = (9/10)n < n$
- Parts add up to less than the whole.
- This implies a decreasing geometric series when untangle the recurrence equation.
More generally, for recurrence equation
\[T(n) = cn + T(a \cdot n) + T(b \cdot n), \]
if \(a+b < 1 \), then
\[T(n) \leq c \left[\frac{1}{1-(a+b)} \right] n \]

Question: will algorithm select still be linear if we divide the keys into sets of 3, or 7?

Selection algorithms:

For median selection,

- Blum, Floyd, Pratt, Rivest & Tarjan 5.34n
- Dor and Zwick (1995) 2.95n
- Dor and Zwick (1996) \((2+\epsilon)n\) with \(\epsilon \approx 2^{-80} \) used in proof of lower bound.