
1

CISC320, F05, Lec5,  Liao 1

CISC 320 Introduction to Algorithms
Fall 2005

Lecture 5
HeapSort
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An idea to speedup Insertion Sort is, for a to-be-inserted key, use Binary 
search to find the proper position in the sorted segment.

When i-th element is to be inserted, the sorted segment has size 
(i-1), and binary search takes O(lg(i-1)) = O(lg(i) to find the right 
position. Therefore the total cost is

Σi=1 to n O(lg(i)) =  O(n lg n).
But, how to actually insert an element into an array? Need to 
move other elements to their right, one by one, to fill the vacancy 
left by the to-be-inserted key. And it takes same number of shifting 
as does the original insertion sort.
How about to store the sorted segment in a linked list, so inserting 
a new element will be easy? But, binary search does not work for
a linked list.
How about to use instead a binary search tree? Yes. But an 
ordinary BST has O(n) worst case time. 
Then a balanced BST, such as Red-black tree, will do it: in O(n lg
n) time. This way, while we achieved lower bound in time, the 
algorithm is no longer “in-place”.

Is there a data structure that help achieve both?
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Heapsort

Heap: a binary tree T that satisfies
1. T is complete through depth h-1
2. All paths to a leaf of depth h are to the left of all 

paths to a leaf of depth h-1, i.e., leaves at level h 
are filled from left to right.

3. Key at any node is greater than or equal to the 
keys at each of its children (for maximizing 
heap). This is called heap property or partial 
order tree property.
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Parent(i) = └i/2┘

Left(i) = 2i

Right(i) = 2i + 1
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Maintain a Max-Heap

Left and right subtrees of i are already Max-Heaps
Make subtree rooted at i a Max-Heap
Max-Heapify(A, i) 
1 l ← left(i); // l = 2i
2 r ← right(i); // r = 2i+1
3 if ( l ≤ n and A[l] > A[i]) 
4 then largest ← l;
5 else largest ← i;
6 if (r ≤ n and A[r] > A[largest])
7 then largest ← r;
8 if (largest ≠ i)
9 then exchange A[i] ↔ A[largest];
10 Max-Heapify(A, largest);

Analysis:
time is proportional to height of i

∈ O(lg n)
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MAX-Heapify(A, 2)
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a. Exchange A[2] with A[4] and 
recursively call heapify(A,4)

b. Exchange A[4] with A[9] and 
recursively call heapify(A, 9)

c. Node 9 has no children, so it is 
done.

a

c

b
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Construct a Heap
Convert an array A[1..n] into a Max-Heap
Elements from n/2 +1 to n correspond to leaves, 
and themselves are 1-element heaps already.

Build-Max-Heap(A) 
1. For (i= floor(n/2); i > 1; i--)
2. Max-Heapify(A, i); 
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Analysis of Build-Max-Heap
n calls to heapify = n O(lg n) = O(n lg n)
A tighter analysis

T(n) = T(n-r-1) + T(r) + 2 lg(n)

= 2T((n-1)/2) + 2 lg(n)       // complete binary tree

∈Θ(n)                              // master theorem 

heapifyright subtreeleft subtree
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Heapsort
Heapsort(A)
int heapsize = n;

1. Build-Max-Heap(A);                         // O(n)
2. for(i = heapsize; i > 2; i--)              // n
3. do exchange A[1] ↔ A[i];           // O(1)
4. heapsize = heapsize – 1;       // O(1)
5. Max-Heapify(A, 1);                         // O(lg n)

Time analysis:
T(n) = O(n) + O(n lg n) = O(n lg n)

i

sortedheap

1 n
Largest key in the heap
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A more exact analysis
T(n) = Θ(n) + 2 ∑ i=1 to n-1 └lg i┘

≤ Θ(n) + 2 ∫1 n (lg e) ln x dx
= Θ(n) + 2 (lg e) (n ln n – n)
= Θ(n) + 2(n lg(n) – 1.443 n)
= 2 n lg(n) + O(n)



3

CISC320, F05, Lec5,  Liao 13

Heap used as priority queue
Max-Heap-Insert(S,x) inserts element x into the 
set S (time:  )
Heap-Maximum(S) returns the element of S with 
the largest key (time:     )
Heap-Extract-Max(S) removes and returns the 
element of S with the largest key (time:      )

A heap can support any priority-queue 
operations on a set of size n in _ time.
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Heap-extract-max(A)
1. If heap-size(A) < 1 
2. then error “heap underflow”
3. max  = A[1];
4. A[1] = A[heap-size(A)]
5. Heap-size(A) = heap-size(A) -1
6. Max-Heapify(A, 1)
7. Return max;

Note: Heap-extract-max takes only O(lg n) time
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Max-Heap-Insert(A, key)
1. heap-size(A) = heap-size(A) + 1
2. i = heap-size(A)
3. while (i > 1 and A[parent(i)] < key)
4. exchange A[i] ↔ A[parent(i)]
5. i = parent(i) 

Note: this is bubble-up heap, only requires one comparison 
at each level to float a big key to its right position (in 
contrast to heapify which requires two comparisons to 
filter down a small key)
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Max-Heap-Insert(A, 15)
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Comparison of sorting algorithms

Algorithm Worst-case Average Space usage
Insertionsort n2/2 Θ(n2) in place
Quicksort n2/2 Θ(n log n) extra space log n
Mergesort n lg n Θ(n log n) extra space n
Heapsort 2n lg n Θ(n log n) in place
Accl. Heapsort n lg n Θ(n log n) in place
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Lower bounds: worst-case

Decision tree approach
nodes ↔ comparisons of keys
leaves ↔ possible permutation of n keys (=n!)

Height ↔ max # of comparisons
≥ lg (# of leaves) = lg(n!)≥ (n/2)lg(n/2)
∈Θ(n log n)

i:j

xi<xj
xi>xj

xi xj xj xi
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Lower bounds
Average- Case

Tav(n) = (sum of lengths of all paths from the root 
to a leaf) / (L, # of leaves)
Balanced decision tree => lower Tav(n)
A complete tree is most balanced: [L lg(L)] /L
Therefore,  

Tav(n) ≥ lg(L) = lg(n!) ∈Θ(n log n)    


