CISC 320 Introduction to Algorithms
Fall 2005

Lecture 4
QuickSort & MergeSort

CISC320, FO5, Lec4, Liao

Terminologies

o Comparison-based sorting
o In-place

o Stable sorting

CISC320, F05, Lec4, Liao

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

INSERTION-SORT(A)

I for j « 2tolength[A]

2 do key «— A[j]

3 > Insert A[/] into the sorted sequence A[l..j — 1].
4 i< j—1

5 while ;i > 0 and A[i] > key
6 do Ali + 1] < A[i]
7 [«—i—1

8

Ali + 1] < key

Loop invariants and the correctness of insertion sort

CISC320, FO5, Lec4, Liao 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1 2 3 6 17 6 'id
o B glm
3 [} 23 4 5 6 1 34 5 6

4 ' Ee Ilﬂli‘ NEB0EG

Figure 2.2 The operation of INSERTION-SORT on the array A = (5, 2, 4, 6, 1, 3). Array indices
appear above the rectangles, and values stored in the array positions appear within the rectangles.
(a)-(e) The iterations of the for loop of lines 1-8. In each iteration, the black rectangle holds the
key taken from A[j], which is compared with the values in shaded rectangles to its left in the test of
line 5. Shaded arrows show array values moved one position to the right in line 6, and black arrows
indicate where the key is moved to in line 8. (f) The final sorted array,

CISC320, FO5, Lec4, Liao 4

‘ Insertion Sort: complexity analysis

m Worst-case
)/2

= |1ton1|

ey

for loop to see hile | t

whether A[i] VAv[i]I Zt cr)r?(?stoi tr;nnc]);/s

needs to move to the front of the
array

CISC320, FO5, Lec4, Liao

QUICKSORT(A, p, r)

1 ifp<r

2 then g <— PARTITION(A, p, r)
3 QUICKSORT(A, p,qg — 1)
4 QUICKSORT(A, g + 1,r)

Why we save? Because elements in range [p, g-1] and range [q+1, r]
will never be compared in this divide-and-conquer algorithm.

CISC320, FO5, Lec4, Liao

Given any pivot element AJr], it takes n-1 comparisons to
partition array A into two subarrays and the right location for
A[r] such that all smaller keys are to its left and larger keys to
the right. The partition, as shown below, is “in-place”. Is it
also stable?

PARTITION (A, p, r)

I x «— A[r]

2 << p-—1

3 forj <« ptor —1

4 do if A[j] < x

5 then;/ «— i + 1

6 exchange A[i] < A[/j]
7 exchange A[i + 1] — Alr]

8 returni + 1

CISC320, FO5, Lec4, Liao

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

i pj r
(@) I? [sT7]1[3]5]6f¢]
i

i r

b r.ld]
p.i J F

©) I E !.[4]
pi j r

) ;2-||5:5 f.[4|
poi i r

© 52;|-3 5_{.[4]
P i j ¥

w21 3-55{.[4|

: e

e

()]

0}

Figure 7.1 The operation of PARTITION on a sample array. Lightly shaded array elements are all in
the first partition with values no greater than v, Heavily shaded eleme
ave not yet be
) The initial array
i (b} Th

are in the second partition

put in one of the first two
ngs. None of
pped with
: partition
he values
ws 1o include

3 and 8 are swapped, and the smaller partition grows. (g)—(h) partition
5 and 6 and the loop terminates. (i) In lines 7-8, the pivot element is swapped so that it lies between

the two partitions.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

. .
e S
<x > X unrestricted

Figurer7.2 The four regions maintained by the procedure PARTITION on a subarray A[p..r]. The
values in A[p . .i] are all less than or equal to x, the values in A[i + 1. . J — 1] are all greater than x,
and A[r] = x. The values in A[j..r — 1] can take on any values.

CISC320, FO5, Lec4, Liao 9

‘ Quicksort: ideal-case

Each call to the partition subroutine will return a splitPoint which is right at the
middle of the range, namely, divide the range into two equal subranges.

In doing so, at most n comparisons are needed to ensure one subrange
contains only keys that are smaller than the pivot, and the other subrange
only keys larger than the pivot.

Therefore,

T(n) =2T(n/2) + n

CISC320, FO5, Lec4, Liao 10

‘ Quicksort: worst-case

Each call to the partition subroutine will return a splitPoint which is just the left
boundary of the range, namely, no keys are smaller than the pivot.

How many comparisons needed to know this? Still, all elements in the range need
to compare with the pivot.

When does this happen? Ironically when the array is a sorted one.

In this case, divide-and-conquer decays into chip-and-conquer as the 2nd recursive
call is quickSort(E, splitPoint + 1, last), chipping off one element from the range.

Therefore,

T(n)=T(n-1) +n

[——
(] I ———

5] £ IS = R

O (n?2)

CISC320, FO5, Lec4, Liao 11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

n ; cn
A / \
1 9 .
0N 0 i cn
L 9 9 3L . :
105 1t 15 1 T T “n
/N /N /N
logygpon |/ S T / \?29
Y 1 7000 n 1000 H i chn
ANAY
A : - < cn
"
! I ot < ¢n
O(nlgn)

Figure 7.4 A recursion tree for QUICKSORT in which PARTITION always produces a 9-to-1 split,
yielding a running time of O (1 Ig #). Nodes show subproblem sizes, with per-level costs on the right.
The per-level costs include the constant ¢ implicit in the @ (n) term.

Quicksort: Average-case

Assumption:
Prob(splitPoint = i| splitPoint = partiton[1 to n]) = 1/n
Then
TN)=n-1+ 301001 (1N)[T(i) + T(n-1-i)]
=n-1+(1/N) Yioq o noq [T(0) + T(n-1-i)]
=n-1+(2/N) Yicq 10t T0)

Claim: T(n) < c nlg(n) holds for any n =1, where c is a constant.
Proof: induction on n.
Base case n = 1. One single element array is sorted, i.e., T(1) = 0.
As c 1In(1) = 0, the theorem holds for the base case.
Assume for any n, T(n) < c nlg(n), then
T(n+1) = (1+1) -1+ (20(N+1)) Ty 00 T(D)
sn+ (2((n+1) Yo wnCilgli)
<n+ (2c/(n+1) ™1 x Ig(x) dx
=n+2c[(1/2)(n+1)21g (n+1) — (1/4) (n+1)2 + (1/4)] / (n+1)
=c(n+1) In(n+1) + (n+1) [1- (c/2) + (c/2) (n+1)2]-1
<2(n+1)In(n+1) ifc=2
QED

CISC320, FO5, Lec4, Liao 13

Using a randomly chosen element as pivot will enforce
the equal distribution assumption made at the average-
case analysis.

RANDOMIZED-PARTITION (A, p, 1)
I 1 < RANDOM(p, r)

2 exchange A[r] < Ali]

3 return PARTITION(A, p, r)

RANDOMIZED-QUICKSORT(A, p, r)

1 ifp<r

2 then ¢ <~ RANDOMIZED-PARTITION (A, p, r)
3 RANDOMIZED-QUICKSORT(A, p,q — 1)
RANDOMIZED-QUICKSORT (A, g + 1, r)

o~

CISC320, F05, Lec4, Liao 14

Quicksort: space complexity

Quicksort is “in gace” sort, because no extra array is
needed. Yet there are hidden space usage: stacks for
recursive calls- >0(n) for worst case, and Ig(n) on
average. The following modified algorithm guarantees this
lg(n) usage of space.

QUICKSORT/ (A, p, r)

1 while p < r
2 do > Partition and sort left subarray.
3 g < PARTITION(A, p,r)
4 QUICKSORT(A, p,g — 1)
5 p <—q-+1
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
CISC320, FO5, Lec4, Liao 15

Mergesort

MERGE-SORT(A, p, r)

1 ifp<r

2 theng <« [(p +71)/2]

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, g + 1,r)
S MERGE(A, p,q,r)

Unlike quickSort, mergeSort guarantees equal division each
time.

Array with just a single element is already sorted!
Work is done at the combining steps

CISC320, F05, Lec4, Liao 16

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

MERGE(A, p,q,r)

1 np<«<qg—p+1

2 mer—g

3 create arrays L[1..n; + 1] and R[1..n, + 1]
4 fori < 1ton;

5 do L[i] < Alp +i — 1]

6 forj <« lton,

7 doR[j] < Alg + j]

8 Lln +1] « o0

9 R[ng + 1] <~ OO0
10 i «1
11 j «1
12 fork < ptor
13 doif L[i] < R[/]
14 then A[k] < L[i]

15 I —i+1

16 else A[k] « R[j]
17 j<Jj+1

17
‘ Mergesort: example Is it a stable sorting?

CISC320, FO5, Lec4, Liao

18

Mergesort: analysis

Worst-case (Q: when?; and when is best case)
T(n)=T(Ln/2d) + T(n/29) +n -1
T(1)=0

Master Theorem => T(n) €O(n log n)

Note: 1st algorithm by far does nlog(n) for worst-case.
Can we do better? Or will be better off on average?

CISC320, FO5, Lec4, Liao 19

10

