
1

CISC320, F05, Lec4,  Liao 1

CISC 320 Introduction to Algorithms
Fall 2005

Lecture 4
QuickSort & MergeSort

CISC320, F05, Lec4,  Liao 2

Terminologies
Comparison-based sorting
In-place
Stable sorting



2

CISC320, F05, Lec4,  Liao 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CISC320, F05, Lec4,  Liao 4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



3

CISC320, F05, Lec4,  Liao 5

Insertion Sort: complexity analysis

Worst-case
Twc(n) ≤ Σi=1to n-1 i = n(n-1)/2

for loop to see 
whether A[i] 
needs to move 

while loop to move 
A[i] at most i times 
to the front of the 
array

CISC320, F05, Lec4,  Liao 6

Why we save?  Because elements in range [p, q-1] and range [q+1, r] 
will never be compared in this divide-and-conquer algorithm.



4

CISC320, F05, Lec4,  Liao 7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Given any pivot element A[r], it takes n-1 comparisons to 
partition array A into two subarrays and the right location for 
A[r] such that all smaller keys are to its left and larger keys to 
the right. The partition, as shown below, is “in-place”. Is it 
also stable?

CISC320, F05, Lec4,  Liao 8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



5

CISC320, F05, Lec4,  Liao 9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CISC320, F05, Lec4,  Liao 10

Quicksort: ideal-case
Each call to the partition subroutine will return a splitPoint which is right at the 

middle of the range, namely, divide the range into two equal subranges.
In doing so, at most n comparisons are needed to ensure one subrange

contains only keys that are smaller than the pivot, and the other subrange
only keys larger than the pivot.

Therefore,
T(n) = 2T(n/2) + n 

n/2                               n/2

n/4              n/4 n/4 n/4

n

n

n
lg(n)

…

n lg(n)

…



6

CISC320, F05, Lec4,  Liao 11

Quicksort: worst-case
Each call to the partition subroutine will return a splitPoint which is just the left 

boundary of the range, namely, no keys are smaller than the pivot.
How many comparisons needed to know this? Still, all elements in the range need 

to compare with the pivot.
When does this happen? Ironically when the array is a sorted one.
In this case, divide-and-conquer decays into chip-and-conquer as the 2nd recursive 

call is quickSort(E, splitPoint + 1, last), chipping off one element from the range.
Therefore,

T(n) = T(n-1) + n 

1                                       n-1                        

1 1                                   n-2                        

n

n-1

n-2
n

…

Θ (n2)

…

CISC320, F05, Lec4,  Liao 12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



7

CISC320, F05, Lec4,  Liao 13

Quicksort: Average-case
Assumption: 

Prob(splitPoint = i| splitPoint = partiton[1 to n]) = 1/n
Then

T(n) = n-1 + ∑i=0 to n-1   (1/n) [T(i) + T(n-1-i)] 
= n-1 + (1/n) ∑i=1 to n-1 [T(i) + T(n-1-i)] 
= n-1 + (2/n) ∑i=1 to n-1 T(i) 

Claim: T(n) ≤ c n lg(n) holds for any  n ≥1, where c is a constant.
Proof:  induction on n.

Base case n = 1. One single element array is sorted, i.e., T(1) = 0. 
As c 1 ln(1) = 0, the theorem holds for the base case.

Assume for any n, T(n) ≤ c n lg(n), then 
T(n+1) = (n+1) -1 + (2/(n+1)) ∑i=1 to n T(i) 

≤ n + (2/(n+1) ∑i=1 to n c i lg(i) 
≤ n + (2c/(n+1) ∫1n+1   x lg(x) dx
= n + 2c [(1/2)(n+1)2 lg (n+1) – (1/4) (n+1)2 + (1/4)] / (n+1)
= c(n+1) ln(n+1) + (n+1) [ 1- (c/2 ) +  (c/2) (n+1) -2 ] - 1  
≤ 2(n+1) ln(n+1)    if c = 2                                     

QED

CISC320, F05, Lec4,  Liao 14

Using a randomly chosen element as pivot will enforce 
the equal distribution assumption made at the average-
case analysis.



8

CISC320, F05, Lec4,  Liao 15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Quicksort: space complexity

Quicksort is “in- place” sort, because no extra array is 
needed. Yet there are hidden space usage: stacks for 
recursive calls - > Θ(n) for worst case,  and lg(n) on 
average. The following modified algorithm guarantees this 
lg(n) usage of space.

CISC320, F05, Lec4,  Liao 16

Mergesort

Unlike quickSort, mergeSort guarantees equal division each 
time.
Array with just a single element is already sorted!
Work is done at the combining steps



9

CISC320, F05, Lec4,  Liao 17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CISC320, F05, Lec4,  Liao 18

Mergesort: example

5 2 4 6 1 3 2 7

1 2 2 3 4 5 6 7

2 4 5 6 1 2 3 7

2 5 4 6 1 3 2 7

5 2 4 6 1 3 2 7

5 2 4 6 1 3 2 7

split

split split

split split split split

merge merge merge merge

merge merge

merge

5 2 4 6 1 3 2 7

Is it a stable sorting?



10

CISC320, F05, Lec4,  Liao 19

Mergesort: analysis

Worst-case (Q: when?; and when is best case)
T(n) = T(└n/2┘) + T(┌n/2┐) + n -1
T(1) = 0

Master Theorem => T(n) ∈Θ(n log n)

Note: 1st algorithm by far does nlog(n) for worst-case.
Can we do better? Or will be better off on average?


