
1

CISC320, F05, Lec3, Liao 1

CISC 320 Introduction to Algorithms
Fall 2005

Lecture 3
Recurrences and Master theorem

CISC320, F05, Lec3, Liao 2

General scheme for time complexity analysis

1. For a sequence of blocks, add up the cost of individual
blocks

1. For a loop, the worst case = the loop range times the cost of a
single iteration

2. With alternation, take the cost of the most costly
branch

3. If recursive procedure called, add T(n’), where n’ is the
size at call.

CISC320, F05, Lec3, Liao 3

Recursion for computation
A computation model is Turing complete when it can compute everything that

can be computed by a Turing machine.

Pragmatically, a model (or a language) is Turing complete if it can do
sequence
branch
repetition (either as loop or as recursion)

Recursion
is as powerful as iteration in establishing a Turing complete model.
is proof-friendly for proving correctness of algorithms. (Thus promoted in
functional programming languages, such as ML).

Why? (Free of “Computing by Side Effect” problems using iterations)
is also efficient.

Myth: Loop is much faster than recursion
Truth: recursion can be as efficient as iteration.

Note: any algorithm using recursion can be converted to using iterations, and
vice versa.

CISC320, F05, Lec3, Liao 4

Iterations can be converted as recursions
For example, Sequential Search can be implemented

recursively

int seqSearchRec(int[] E, int m, int num, int K)
int ans;

1 if (m >= num)
2 ans = -1;
3 else if (E[m] == K)
4 ans = m;
5 else
6 ans = seqSearchRec(E, m+1, num, K);
7 return ans;

CISC320, F05, Lec3, Liao 5

For example, the recursive Sequential Search can
be analyzed using this scheme

int seqSearchRec(int[] E, int m, int num, int K)
int ans;

1 if (m >= num)
2 ans = -1;
3 else if (E[m] == K)
4 ans = m;
5 else
6 ans = seqSearchRec(E, m+1, num, K);
7 return ans;

Let n = num –m as the initial size
T(n) = 1 + max(0, 1+ max(0, T(num-(m+1)))) + 0 = T(n-1) + 2

Line1 Line2 Line 3 Line4 Line6 Line7

CISC320, F05, Lec3, Liao 6

Divide- and- Conquer

E.g., Binary search of an ordered array.
Modify the seqSearchRec to do binary search. If the recursive
implementation of sequential search is superficial, a recursive
implementation of binary search is a real convenience (as compared to a
loop based implementation).

T(n) = T(n/2) + Θ(1).

In general, the cost of solving a problem of size n is shared by the cost
of a subproblems of size n/b, plus non-recursive overhead cost f(n):

T(n) = a T(n/b) + f(n)
This is a recurrence equation.

How to evaluate the cost T(n)?

2

CISC320, F05, Lec3, Liao 7

Recursion-tree method
T(n) = T(n/2) + T(n/2) + n

T(n) n

T(n/2) n/2 T(n/2) n/2

T(n/4) n/4 T(n/4) n/4 T(n/4) n/4 T(n/4) n/4

n

n

n

…

lg(n)

(+

n lg(n)

row-sum or
per-level cost

Example:

CISC320, F05, Lec3, Liao 8

Observations of recursion-tree method
1. T(n) = the sum of the nonrecursive costs of all nodes in the tree, which is

the sum of the per-level costs at all levels;
2. Depth of the tree is D = log b n;
3. Number of leaves is approximately L = a D = nE where E = log b a;
4. If the per-level costs remain about constant at all depth, then T(n) ∈

Θ(f(n) log(n)).
5. If the per-level costs grow fast, the cost at the leaves would dominate,

therefore T(n) ∈ Θ(nE);
6. If the per-level costs decrease fast, the cost at the root would dominate,

therefore T(n) ∈ Θ(f(n));
7. And more formally,

CISC320, F05, Lec3, Liao 9

The Master theorem (Theorem 4.1)
The recurrence equation

T(n) = a T(n/b) + f(n),
where a ≥ 1, b > 1, and n/b interpreted as either ⎡n/b⎤ or

⎣n/b⎦. Then T(n) can be bounded asymptotically as
follows:

1. If f(n) = O(nE-ε) for constant ε> 0, then T(n) = Θ(nE)
where E = log b a, called critical exponent. (Note: this
means nE is polynomially faster than f(n).)

2. If f(n) = Θ(nE), then T(n) = Θ(f(n) log(n)).
3. If f(n) = Ω(nE+ε) for ε> 0, and if af(n/b) ≤ cf(n) for some

constant c < 1 and all sufficiently large n, then T(n) =
Θ(f(n)). (Note: this means f(n) is polynomially faster than nE.)

CISC320, F05, Lec3, Liao 10

Example 1

T(n) = 7T(n/2) + n2

1. Recognize a, b, and f(n):
a = 7, b = 2, and f(n) = n2

2. Compute E = log b a = lg(7)
3. Compare f(n) and nE asymptotically

f(n) = nlg7+(2-lg7) = nlg7 – 0.8 = O(nE-0.8)
4. Apply appropriate case of Master Theorem

case 1 applies: T(n) = Θ(nlg7)

CISC320, F05, Lec3, Liao 11

Example 2
T(n) = 4T(n/2) + n2 lg(n)

1. Recognize a, b, and f(n):
a = 4, b = 2, and f(n) = n2lg(n)

2. Compute E = log b a = lg(4) = 2
3. Compare f(n) and nE asymptotically

f(n)/ nE = n2 lg(n) / n2 = lg(n)
4. Determine appropriate case of Master Theorem and apply

case 1 : f(n)/ nE = lg(n) =? O(n-ε) for some ε > 0 NO
case 2 : f(n)/ nE = lg(n) =? Θ(1) NO
case 3 : f(n)/ nE = lg(n) =? Ω(nε) for some ε > 0 NO

Note: lg(x) is faster than Θ(1) but slower than xε for any ε > 0 (Exercise).
Lesson: There are gaps between cases in Master Theorem, therefore

Master Theorem does not cover all recurrence equations of that
form.

CISC320, F05, Lec3, Liao 12

Example 3

T(n) n2

T(n/4) (n/4)2 T(n/2) (n/2)2

T(n/16) (n/16)2 T(n/8) (n/8)2 T(n/8) (n/8)2 T(n/4) (n/4)2

n2

(5/16)n2

(25/256)n2

…

lg(n)

+

Exercise: T(n) = n2(1+ 5/16 + (5/16)2 + …) ≤ (16/11) n2 = Θ(n2)

T(n) = T(n/4) + T(n/2) + n2

row-sum

3

CISC320, F05, Lec3, Liao 13

Substitution method
Make a guess
Substitute it into the recurrence
Prove the recurrence hold by mathematical induction

Example: T(n) = T(n/4) + T(n/2) + n2.
From decision tree method, we have a good guess that T(n)

=O(n2).
Let T(n) ≤ cn2, where c is a suitable positive constant.
Plug it into the RHS of the recurrence.
T(n) ≤ c (n/4)2+ c(n/2)2+ n2= (c/16 + c/4 +1) n2 ≤ cn2, when c ≥ 16/5

CISC320, F05, Lec3, Liao 14

Induction Proofs

A mechanic procedure with mainly 3 steps
Step 1: prove base case(s), e.g., n=0.
Step 2: assume the goal is true for arbitrary n,

say n=k.
Step 3: then prove it is also true for n=k+1.

CISC320, F05, Lec3, Liao 15

Example: Σi=1
n i = n(n+1)/2

Base case n = 1
LHS = 1 and RHS = 1(1+1)/2 = 1

Note: we can do this manually for n =2, 3, …

Let’s assume it holds for arbitrary n ≥ 1, we now prove it also holds for
n+1.

LHS(n+1) = Σi=1
n+1 i = (Σi=1

n i) + (n+1)
= n(n+1)/2 +(n+1)
= [n(n+1) + 2(n+1)]/2
= (n+1)[n+2]/2
= RHS(n+1)

Since we have proved manually it is true when n=1. Now we know if it is
true for n=1 it must be true for n =2, and if it is true for n=2 it must be
true for n=3, and on and on.

Note: such a procedure is like to unravel a recursive call in a reversed order, i.e., from
base case to more general cases.

