CISC 320 Introduction to Algorithms
Fall 2005

Lecture 3
Recurrences and Master theorem

CISC320, F03, Lec3, Liao 1

General scheme for time complexity analysis

For a sequence of blocks, add up the cost of individual
blocks

1. For aloop, the worst case = the loop range times the cost of a
single iteration

With alternation, take the cost of the most costly
branch

If recursive procedure called, add T(n’), where n’ is the
size at call.

CISC320, FO3, Lec3, Liao 2

Recursion for computation

A computation model is Turing complete when it can compute everything that
can be computed by a Turing machine.

Pragmatically, a model (or a language) is Turing complete if it can do
o sequence
o branch
o repetition (either as loop or as recursion)

Recursion
a is as powerful as iteration in establishing a Turing complete model.
o is proof-friendly for proving correctness of algorithms. (Thus promoted in
functional programming languages, such as ML).

Why? (Free of “Computing by Side Effect’ problems using iterations)

o s also efficient.
Myth: Loop is much faster than recursion
Truth: recursion can be as efficient as iteration.

Note: any algorithm using recursion can be converted to using iterations, and
vice versa.

CISC320, F05, Lec3, Liao 3

Iterations can be converted as recursions

For example, Sequential Search can be implemented
recursively

int seqSearchRec(int[] E, int m, int num, int K)
int ans;
if (m >= num)
ans = -1;
else if (E[m] == K)
ans =m;
else
ans = seqSearchRec(E, m+1, num, K);
return ans;

CISC320, FO3, Lec3, Liao 4

For example, the recursive Sequential Search can
be analyzed using this scheme
int seqSearchRec(int[] E, int m, int num, int K)
int ans;
if (m >= num)
ans =-1;
else if (E[m] == K)
ans =m;
else
ans = seqSearchRec(E, m+1, num, K);
return ans;

Let n = num —m as the initial size
T(n) = } + max(0, 1+ max(0, T(num-(m+1)))) + 9 =T(n-1)+2
Pt

Linet Line2 Line3 Line4 Line6 Line?

CISC320, FO3, Lec3, Liao 5

Divide ad Q@nquer

E.g., Binary search of an ordered array.

Modify the seqSearchRec to do binary search. If the recursive
implementation of sequential search is superficial, a recursive
implementation of binary search is a real convenience (as compared to a
loop based implementation).

T(n) =T(n/2) + ©(1).

In general, the cost of solving a problem of size n is shared by the cost
of a subproblems of size n/b, plus non-recursive overhead cost f(n):

T(n) = a T(n/b) + f(n)
This is a recurrence equation.

How to evaluate the cost T(n)?

CISC320, FO3, Lec3, Lino 6

Recursion-tree method
Example: T(n)=T(n/2) + T(n/2) + n

row-sum or
per-level cost

CISC320, FO3, Lec3, Liao 7

Observations of recursion-tree method
T(n) = the sum of the nonrecursive costs of all nodes in the tree, which is
the sum of the per-level costs at all levels;
Depth of the tree is D = log ,, n;
Number of leaves is approximately L =aP = nf where E = log , a;
If the per-level costs remain about constant at all depth, then T(n) €
O(f(n) log(n)).
If the per-level costs grow fast, the cost at the leaves would dominate,
therefore T(n) € ©(nE);
If the per-level costs decrease fast, the cost at the root would dominate,
therefore T(n) € O(f(n));
And more formally,

CISC320, FO3, Lec3, Liao s

The Master theorem (Theorem 4.1)
The recurrence equation
T(n) =a T(n/b) + f(n),
where a = 1, b > 1, and n/b interpreted as either [n/b] or

Ln/b]. Then T(n) can be bounded asymptotically as
follows:

If f(n) = O(n&-¢) for constant €> 0, then T(n) = ©(nE)
where E =log ,, a, called critical exponent. (Note: this
means nE is polynomially faster than f(n).)

If f(n) = ©(nE), then T(n) = ©(f(n) log(n)).

If f(n) = Q(nE*e) for > 0, and if af(n/b) < cf(n) for some
constant ¢ < 1 and all sufficiently large n, then T(n) =
@(f(n)). (Note: this means f(n) is polynomially faster than nE.)

CISC320, FO3, Lec3, Liao 9

Example 1
T(n) = 7T(n/2) + n?

1. Recognize a, b, and f(n):
a=7,b=2,andf(n)=n?
2. Compute E =log,a=1g(7)
3. Compare f(n) and nE asymptotically
f(n) = Nlo7+(2497) = ig7-08 = Q(nE-08)
4. Apply appropriate case of Master Theorem
case 1 applies: T(n) = ©(n's”)

CISC320, FO3, Lec3, Liao 10

Example 2
T(n) = 4T(n/2) + n21g(n)

1. Recognize a, b, and f(n):
a=4,b=2,and f(n) = n2g(n)
2. Compute E =log , a=1Ig(4) =2
3. Compare f(n) and nE asymptotically

f(n)/ nE = n21g(n) / n2=Ig(n)
4. Determine appropriate case of Master Theorem and apply

case 1:f(n)/nE =Ig(n) =? O(n¢) forsomee>0 NO

case 2 : f(n)/ nE =Ig(n) =? ©(1) NO

case 3:f(n)/ nE=1Ig(n) =? Q(n¢) forsomee>0 NO

Note: Ig(x) is faster than ©(1) but slower than x¢ for any € > 0 (Exercise).

Lesson: There are gaps between cases in Master Theorem, therefore

Master Theorem does not cover all recurrence equations of that
form.

CISC320, FO3, Lec3, Liao 1

Example 3

T(n) = T(n/4) + T(n/2) + n2

row-sum
n?

(5116)n2

lg(n)

[Tene]wiep] [Toe)wer] [Tws) [weR] [Toe]wed (25/256)n2

Exercise: T(n) =n2(1+5/16 + (5/16)2 +...) <(16/11) n2 = O(n?)

CISC320, FO3, Lec3, Lino 12

Substitution method

Make a guess
Substitute it into the recurrence
Prove the recurrence hold by mathematical induction

Example: T(n) = T(n/4) + T(n/2) + n2
From decision tree method, we have a good guess that T(n)
=0(n?).
Let T(n) < cn?, where c is a suitable positive constant.
Plug it into the RHS of the recurrence.
T(n) < ¢ (n/4)%+ c(n/2)%+ n2= (c/16 + c/4 +1) n2< cn?, when ¢ 2 16/5

CISC320, FO3, Lec3, Liao 13

Induction Proofs

A mechanic procedure with mainly 3 steps
Step 1: prove base case(s), e.g., n=0.

Step 2: assume the goal is true for arbitrary n,
say n=k.
Step 3: then prove it is also true for n=k+1.

CISC320, FO3, Lec3, Liao 14

Example: 3_," i = n(n+1)/2

Base case n =1
LHS =1and RHS = 1(1+1)/2=1
Note: we can do this manually forn =2, 3, ...

Let's assume it holds for arbitrary n > 1, we now prove it also holds for

LHS(n+1) = £_,™1i = (Z."i) + (n+1)
=n(n+1)/2 +(n+1)
=[n(n+1) + 2(n+1))/2
= (n+1)[n+2]/2
=RHS(n+1)

Since we have proved manually it is true when n=1. Now we know if it is
true for n=1 it must be true for n =2, and if it is true for n=2 it must be
true for n=3, and on and on.

Note: such a procedure is like to unravel a recursive call in a reversed order, i.e., from
base case to more general cases.

CISC320, FO3, Lec3, Liao 15

