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CISC 320 Introduction to Algorithms
Fall 2005

Lecture 3
Recurrences and Master theorem
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General scheme for time complexity analysis

1. For a sequence of blocks, add up the cost of individual 
blocks

1. For a loop, the worst case = the loop range times the cost of a 
single iteration

2. With alternation, take the cost of the most costly 
branch

3. If recursive procedure called, add T(n’), where n’ is the 
size at call.  
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Recursion for computation
A computation model is Turing complete when it can compute everything that 

can be computed by a Turing machine. 

Pragmatically, a model (or a language) is Turing complete if it can do
sequence
branch
repetition (either as loop or as recursion)

Recursion
is as powerful as iteration in establishing a Turing complete model. 
is proof-friendly for proving correctness of algorithms. (Thus promoted in 
functional programming languages, such as ML).

Why?  (Free of “Computing by Side Effect” problems using iterations)
is also efficient.

Myth: Loop is much faster than recursion 
Truth: recursion can be as efficient as iteration. 

Note: any algorithm using recursion can be converted to using iterations, and 
vice versa.
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Iterations can be converted as recursions
For example, Sequential Search can be implemented 

recursively

int seqSearchRec(int[] E, int m, int num, int K)
int ans;

1 if (m >= num) 
2 ans = -1;
3 else if (E[m] == K)
4 ans = m;
5 else
6 ans = seqSearchRec(E, m+1, num, K);
7 return ans;
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For example, the recursive Sequential Search can 
be analyzed using this scheme

int seqSearchRec(int[] E, int m, int num, int K)
int ans;

1 if (m >= num) 
2 ans = -1;
3 else if (E[m] == K)
4 ans = m;
5 else
6 ans = seqSearchRec(E, m+1, num, K);
7 return ans;

Let n = num –m as the initial size
T(n) =  1 + max(0, 1+ max(0, T(num-(m+1)))) + 0  = T(n-1) + 2

Line1 Line2 Line 3    Line4 Line6 Line7
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Divide- and- Conquer

E.g., Binary search of an ordered array. 
Modify the seqSearchRec to do binary search. If the recursive 
implementation of sequential search is superficial, a recursive 
implementation of binary search is a real convenience (as compared to a 
loop based implementation).

T(n) = T(n/2) + Θ(1).

In general, the cost of solving a problem of size n is shared by the cost 
of a subproblems of size n/b, plus non-recursive overhead cost f(n):

T(n) = a T(n/b) + f(n)
This is a recurrence equation.  

How to evaluate the cost T(n)?
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Recursion-tree method
T(n) = T(n/2) + T(n/2) + n

T(n) n

T(n/2) n/2 T(n/2) n/2

T(n/4) n/4 T(n/4) n/4 T(n/4) n/4 T(n/4) n/4

n

n

n

…

lg(n)

(+

n lg(n)

row-sum or 
per-level cost

Example:
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Observations of recursion-tree method
1. T(n) = the sum of the nonrecursive costs of all nodes in the tree, which is 

the sum of the per-level costs at all levels;
2. Depth of the tree is D = log b n;
3. Number of leaves is approximately L = a D =  nE where E = log b a;
4. If the per-level costs remain about constant at all depth, then T(n) ∈

Θ(f(n) log(n)).
5. If the per-level costs grow fast, the cost at the leaves would dominate, 

therefore T(n) ∈ Θ(nE);
6. If the per-level costs decrease fast, the cost at the root would dominate, 

therefore T(n) ∈ Θ(f(n));
7. And more formally, 
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The Master theorem (Theorem 4.1)  
The recurrence equation 

T(n) = a T(n/b) + f(n), 
where a ≥ 1, b > 1, and n/b interpreted as either ⎡n/b⎤ or 

⎣n/b⎦. Then T(n) can be bounded asymptotically as 
follows:

1. If f(n) = O(nE-ε) for constant ε> 0, then T(n) = Θ(nE) 
where E = log b a, called critical exponent. (Note: this 
means nE is polynomially faster than f(n).)

2. If f(n) = Θ(nE), then T(n) = Θ(f(n) log(n)).
3. If f(n) = Ω(nE+ε) for ε> 0, and if af(n/b) ≤ cf(n) for some 

constant c < 1 and all sufficiently large n, then T(n) = 
Θ(f(n)). (Note: this means f(n) is polynomially faster than nE.)
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Example 1

T(n) = 7T(n/2) + n2  

1. Recognize a, b, and f(n):
a = 7, b = 2, and f(n) = n2 

2. Compute E  = log b a = lg(7)
3. Compare f(n) and nE asymptotically

f(n) = nlg7+(2-lg7)  = nlg7 – 0.8   = O(nE-0.8)
4. Apply appropriate case of Master Theorem

case 1 applies: T(n) = Θ(nlg7 )
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Example 2
T(n) = 4T(n/2) + n2 lg(n) 

1. Recognize a, b, and f(n):
a = 4, b = 2, and f(n) = n2lg(n) 

2. Compute E  = log b a = lg(4) = 2
3. Compare f(n) and nE asymptotically

f(n)/ nE = n2 lg(n) / n2 = lg(n)
4. Determine appropriate case of Master Theorem and apply

case 1 : f(n)/ nE = lg(n)   =?  O(n-ε)  for some ε > 0    NO
case 2 : f(n)/ nE = lg(n)   =?  Θ(1)                               NO
case 3 : f(n)/ nE = lg(n)   =?  Ω(nε)  for some ε > 0     NO

Note: lg(x) is faster than Θ(1) but slower than xε for any ε > 0  (Exercise).
Lesson: There are gaps between cases in Master Theorem, therefore 

Master Theorem does not cover all recurrence equations of that 
form.
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Example 3 

T(n) n2

T(n/4) (n/4)2 T(n/2) (n/2)2

T(n/16) (n/16)2 T(n/8) (n/8)2 T(n/8) (n/8)2 T(n/4) (n/4)2

n2

(5/16)n2

(25/256)n2

…

lg(n)

+

Exercise:  T(n) = n2(1+ 5/16  + (5/16)2 + …)  ≤ (16/11) n2 = Θ(n2)            

T(n) = T(n/4) + T(n/2) + n2

row-sum
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Substitution method
Make a guess
Substitute it into the recurrence
Prove the recurrence hold by mathematical induction

Example: T(n) = T(n/4) + T(n/2) + n2.
From decision tree method, we have a good guess that T(n) 

=O(n2). 
Let T(n) ≤ cn2, where c is a suitable positive constant.
Plug it into the RHS of the recurrence.
T(n) ≤ c (n/4)2+ c(n/2)2+ n2= (c/16 + c/4 +1) n2 ≤ cn2, when c ≥ 16/5
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Induction Proofs

A mechanic procedure with mainly 3 steps
Step 1: prove base case(s), e.g., n=0.
Step 2: assume the goal is true for arbitrary n, 

say n=k.
Step 3: then prove it is also true for n=k+1.

CISC320, F05, Lec3,  Liao 15

Example: Σi=1
n i = n(n+1)/2

Base case n = 1
LHS = 1 and RHS = 1(1+1)/2 = 1

Note: we can do this manually for n =2, 3, …

Let’s assume it holds for arbitrary n ≥ 1, we now prove it also holds for 
n+1.

LHS(n+1) = Σi=1
n+1 i = (Σi=1

n i) + (n+1)
= n(n+1)/2 +(n+1)
= [n(n+1) + 2(n+1)]/2
= (n+1)[n+2]/2
= RHS(n+1)

Since we have proved manually it is true when n=1. Now we know if it is 
true for n=1 it must be true for n =2, and if it is true for n=2 it must be 
true for n=3, and on and on. 

Note: such a procedure is like to unravel a recursive call in a reversed order, i.e., from 
base case to more general cases. 


