Measuring algorithm performance

Big O

Example: Sequential search of an unordered array E

```c
int seqSearch (int[] E, int n, int k)
1    int ans, index;
2    ans = -1;
3    for (i = 0; i < n; i++) {
4        if (k == E[i])
5            ans = i;
6            break;
7    }
8    return ans;
```

Worst-case: \(T_{\text{worst}}(n) = 3 + 2n \)
Best-case: \(T(n) = 4 \)
Average-case: ???

Average case:
If \(I \) is an instance of size \(n \) of the problem and \(D \) is the set of all distinct possible instances of size \(n \), then the average case or the expected time is

\[
T_{\text{avg}}(n) = \sum_{I \in D} \Pr(I)T(I)
\]

\(S_i \) is the event that \(E[i] = k \)

\[
T_{\text{avg}}(n) = \sum_{i=0}^{n-1} \Pr(S_i)T(S_i)
= \sum_{i=0}^{n-1} \left(\frac{1}{n} \times (2i + 4) \right)
= 3 + n
\]

\[
T_{\text{avg}}(n) = \Pr(\text{succ}) T_{\text{succ}}(n) + \Pr(\text{fail}) T_{\text{fail}}(n)
= 50\% \times (3+n) + 50\% \times (3+2n)
= 3 + \frac{3}{2}n
\]

Lessons learned:
- Worst-case: the most commonly used
 - worst-case gives the upper bound, i.e., guarantees the algorithm will never take any longer
 - worst-case actually happens quite often
 - Worst-case is not much worse than the average (the previous example is the case)
- Average: harder to analyze
- Best-case: not that useful

Big Oh, etc.
- **Upper bound**: \(O(g(n)) = \{ f(n) : \) there exist positive constant \(c \) and \(n_0 \) such that \(0 \leq f(n) \leq c g(n) \) for all \(n \geq n_0 \)\}
 - Meaning: \(g(n) \) grows faster up to a constant factor than any functions in \(O(g(n)) \).
- **Lower bound**: \(\Omega(g(n)) = \{ f(n) : \) there exist positive constant \(c \) and \(n_0 \) such that \(0 \leq c g(n) \leq f(n) \) for all \(n \geq n_0 \} \)
- **Tight bound**: \(\Theta(g(n)) = \{ f(n) : \) there exist positive constant \(c_1, c_2 \) and \(n_0 \) such that \(0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \) for all \(n \geq n_0 \} \)
Examples:

1. \(3n^2 + 5n + 24 = \Theta(n^2)\)

 \[\text{Proof:} \text{ By definition, we need to find } c_1, c_2 \text{ and } n_0 \text{ such that for all } n \geq n_0, c_1 n^2 \leq 3n^2 + 5n + 24 \leq c_2 n^2 \quad (1)\]

 Divide \((1)\) by \(n^2, c_1 \leq 3 + \frac{5}{n} + \frac{24}{n^2} \leq c_2 \]

 The Inequalities in \((2)\) hold for all \(n > 5, c_1 = 3, \text{ and } c_2 = 5.\]

 QED

Properties of Asymptotic Notation and Comparison of Functions

- Transitivity
 \(f \in O(g), g \in O(h) \Rightarrow f \in O(h); f \in \Theta(g), g \in \Theta(h) \Rightarrow f \in \Theta(h); f \in \Omega(g), g \in \Omega(h) \Rightarrow f \in \Omega(h).\)

- Reflexivity
 \(f \in O(f(n)); f \in \Theta(f(n)); f \in \Omega(f(n)).\)

- Symmetry
 \(f \in O(g) \iff g \in \Omega(f); f \in \Theta(g) \iff g \in \Theta(f); O(f+g) = O(\max(f,g)).\)

“little-oh of \(g\) of \(n\)”

\(o(g(n)) = \{f(n): \text{ for any positive constant } c, \text{ there exists a constant } n_0 \text{ such that for all } n \geq n_0, 0 \leq f(n) \leq c g(n)\}\)

Meaning:

- \(o(g(n))\) contains functions in \(O(g(n))\) excluding those in \(\Theta(g(n)).\)
- \(f(n)\) becomes insignificant relative to \(g(n)\) as \(n\) approaches infinity:
 \[\lim_{n \to \infty} f(n)/g(n) = 0.\]

 e.g., \(2n = o(n^2),\) but \(2n^2 \neq o(n^2).\)

 e.g., \(\lg(n) = o(\sqrt{n})\) (Proof by using L’Hospital rule)

Typical asymptotic complexities are

- \(\Omega(n)\), logarithmic (sub-linear)
- \(\Theta(n)\), linear
- \(\Omega(n \lg n), n \lg n\)
- \(\Omega(n^2)\), quadratic
- \(\Omega(n^3)\), cubic
- \(\Theta(2^n)\), exponential

Note:

- Logarithms:
 \(\lg n = \log_2 n; \lg e = \log_{10} n; \lg b = \log_b 0 / \log_b e; \)
 Under the log \(\Theta,\) the base of a logarithm does not matter.

- Factorial \(n!\) grows faster than exponential:
 \(\omega(n!); \omega(n^{\omega(n)}); \omega(n^{\Omega(n)}); \omega(n) = \Theta(n!);\)

 See Section 3.2 in CLRS for more details