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CISC 320 Introduction to Algorithms
Fall 2005

Measuring algorithm performance
Big O
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Measure the time complexity
What is the unit of measurement?

In terms of seconds
a faster CPU takes less time; needs to run algorithms on the same 
machines for fair comparisons.

In terms of machine instructions, i.e., instructions/second (MIPS) 
hard to estimate number of machine instructions based on psuedo

code, also compiler dependent 
In terms of lines of (pseudo) code executed
In terms of number (or cost) of basic operations

What is considered basic?
RAM model of computation (see pp. 21, CLRS 2.2)

How does the “time” depend on the input and input size?
Large size will take longer time
Same size, some input will take longer time than others

Worst-case
Best-case
Average-case

CISC320, F05, Lec2,  Liao 3

Example: Sequential search of an unordered array E

int seqSearch (int[] E, int n, int k)
1 int ans, index;
2 ans = -1;
3 for (i = 0; i < n; i++) {
4 if(k == E[i])
5 ans = i;
6 break;
7 return ans;

Worst-case: Twc(n) = 3 + 2n
Best-case: T(n) = 4
Average-case: ???

Overhead 
of running 
line 1,2, 
and 7
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Average case:

If I is an instance of size n of the problem and D is the set of all distinct 
possible instances of size n, then the average case or the expected 
time is

Tavg(n) = ΣI∈D Pr(I)T(I)

Si is the event that E[i] = k
Tsucc(n) = Σ0≤i≤(n-1) Pr(Si|succ)T(Si)

= Σ0≤i≤(n-1) (1/n) (2i +4)
= 3 + n

Tavg (n) = Pr(succ) Tsucc(n) + Pr(fail) Tfail(n)
=  50% (3+n) + 50% (3+2n)
= 3 + (3/2)n
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Lessons learned:
Worst-case: the most commonly used

worst-case gives the upper bound, i.e., guarantees the 
algorithm will never take any longer
worst-case actually happens quite often
Worst-case is not much worse than the average (the 
previous example is the case)

Average: harder to analyze 
Best-case: not that useful
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Big Oh, etc.
Upper bound: O(g(n)) = { f(n): there exist positive 
constant c and n0 such that 0 ≤ f(n) ≤ c g(n) for all n≥ n0}

Meaning: g(n) grows faster up to a constant factor than 
any functions in O(g(n)).

Lower bound: Ω(g(n)) = { f(n): there exist positive 
constant c and n0 such that 0 ≤ c g(n) ≤ f(n) for all n≥ n0 }

Tight bound: Θ(g(n)) = { f(n): there exist positive constant 
c1, c2 and n0 such that 0 ≤ c1 g(n) ≤ f(n) ≤ c2 g(n) for all n≥
n0 }
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Examples:
3n2 + 5 n + 24 = Θ(n2)

Proof: By definition, we need to find c1, c2, and n0
such that for all n ≥ n0

c1n2 ≤ 3n2 + 5 n + 24  ≤ c2n2 (1)

Divide (1) by n2,  
c1 ≤ 3+ 5 /n + 24 / n2 ≤ c2                (2)

The Inequalities in (2) hold for all n > 5, c1 = 3, and 
c1 = 5.

QED

R les s mmari ed from obser ations
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Properties of Asymptotic Notation and
Comparison of Functions

Transitivity
f ∈ O(g), g ∈ O(h) => f ∈ O(h);

f ∈ Θ(g), g ∈ Θ(h) => f ∈ Θ(h);

f ∈ Ω(g), g ∈ Ω(h) => f ∈ Ω(h).

Reflexivity
f ∈ O(f(n)); f ∈ Θ(f(n)); f ∈ Ω(f(n)).
Symmetry
f ∈ O(g) g ∈ Ω(f) 

f ∈ Θ(g) => g ∈ Θ(f)

O(f+g) = O(max(f,g)) 
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“little-oh of g of n”
o(g(n)) = { f(n): for any positive constant c, there exists a 

constant n0 such that 0 ≤ f(n) ≤ c g(n) for all n≥ n0}

Meaning: 
o(g(n)) contains functions in O(g(n)) excluding those in Θ(g(n)).
f(n) becomes insignificant relative to g(n) as n approaches 
infinity:

limn → ∞ f(n)/g(n)  = 0.

e.g., 2n = o(n2), but 2n2 ≠ o(n2). 
e.g., lg(n) = o(√n) (Proof by using L’Hopital rule)
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Typical asymptotic complexities are

Θ(lg(n)), logarithmic (sub-linear)
Θ(n), linear
Θ(n lg(n)), n-log-n
Θ(n2), quadratic
Θ(n3), cubic
Θ(2n), exponential

Note: 
Logarithms: 

lg n = log 2 n; 
ln n = loge n;
loga b = logc b / logc a
Under the big Oh, the base of a logarithm does not matter.

Factorial n! grows faster than exponential
n! = o(nn)
n! =  ω(2n)
lg(n!) = Θ(n lg(n)) 

See Section 3.2 in CLRS for more details 


