CISC 320 Introduction to Algorithms
Fall 2005

Measuring algorithm performance
Big O

CISC320, FO5, Lec2, Liao

Measure the time complexity
What is the unit of measurement?
o Interms of seconds

a faster CPU takes less time; needs to run algorithms on the same
machines for fair comparisons.

o In terms of machine instructions, i.e., instructions/second (MIPS)

hard to estimate number of machine instructions based on psuedo
code, also compiler dependent

o Interms of lines of (pseudo) code executed
o In terms of number (or cost) of basic operations
What is considered basic?
o RAM model of computation (see pp. 21, CLRS 2.2)
How does the “time” depend on the input and input size?
o Large size will take longer time
o Same size, some input will take longer time than others
Worst-case
Best-case
Average-case

CISC320, FO3, Lec2, Lino 2

Example: Sequential search of an unordered array E

int segSearch (int[] E, int n, int k)
int ans, index;

ans = -1;
for (i = 0; i < n; i++) {
if(k == E[i])
ans = 1i; Overhead
break; of running

line 1,2,
return ans; and

Worst-case: T, (n) = 3 + 2n
Best-case: T(n) = 4

Average-case: ??7?

CISC320, FO3, Lec2, Liao

Average case:

If I is an instance of size n of the problem and D is the set of all distinct
possible instances of size n, then the average case or the expected
time is

T oM = Z,o PIOT()

S;is the event that E[i] = k
Tsuce(N) = Zosiznay Pr(Silsuce)T(S)
= Zosig(ny (1/0) (21 +4)
=3+n
Tavg (M) = Pr(succ) Tge.(n) + Prfail) Tyy(n)
= 50% (3+n) + 50% (3+2n)
=3+ (3/2)n

CISC320, FO5, Lec2, Liao 4

Lessons learned:

o Worst-case: the most commonly used

worst-case gives the upper bound, i.e., guarantees the
algorithm will never take any longer

worst-case actually happens quite often

Worst-case is not much worse than the average (the
previous example is the case)

o Average: harder to analyze
o Best-case: not that useful

CISC320, FO5, Lec2, Liao

Big Oh, etc.

Upper bound: O(g(n)) = { f(n): there exist positive
constant ¢ and n, such that 0 < f(n) < ¢ g(n) for all n= nz}

Meaning: g(n) grows faster up to a constant factor than
any functions in O(g(n)).

Lower bound: Q(g(n)) = { f(n): there exist positive
constant ¢ and n, such that 0 < ¢ g(n) < f(n) for all n= n,}

Tight bound: ©(g(n)) = { f(n): there exist positive constant
¢4 C;and n, such that 0 < ¢, g(n) < f(n) < ¢, g(n) for all nz
ne}

CISC320, FO3, Lec2, Lino 6

‘Copyright © The McGraw-HIl Companies, Inc. PermISsIon required fof 1eproduction or display.

crglnd eginy
= s

- fiih
-

£on

eyt

" "

" n "o
Fin) = B{g(n)) Sin) = Mgirk) Find = Spiady

[£1] (L] (5]

Figure 3.1 Graphic examples of the 8, &, and { notations, In cach part, the value of ag shown is
the minimam pe watbue; any greater value would also work. (a) S.notation bounds 3 function e
within constant factars. We w 1) = Egin)) if there exist positive constants »
that o the sight of mg, the value of [{nh always lies bevween oy gia) and o0 Ve,
natation gives an upper bousd For a finction to within a constant factor. We write fim) = © (2(n))
if the positivie constants ug and e such that 1o the right of ng. the value of £ (n) alwsys lies on
b fe} f-notati lawer bound for o Function 1w wishin a constant factor. 'We
] itlve comstants ng and c such that 10 the right of s, the valse

CISC320, FO3, Lec2, Liao 7

= Examples:
a3n?+5n+24=0(n?
Proof: By definition, we need to find c¢,, ¢,, and n,
such that for allnz n,

c;n?<3n?+5n+24 <c,n? (1)

Divide (1) by n?,
c;£3+5/n+24/n’<c, (2)
The Inequalities in (2) hold for alln > 5, ¢, = 3, and
c, =5

QED

CISC320, FO3, Lec2, Lino s

Properties of Asymptotic Notation and
Comparison of Functions
= Transitivity
fe O(g), ge O(h) =>fe Oh);
fe ©(g), ge 0(h) =>fe o(h);
fe Q(g), ge Qh) =>fe Qh).
= Reflexivity
fe O(f(n)); f e B(FM)): f e Qf(N)).
= Symmetry
fe O(g) ® ge Q(f)
fe ©(g) => g e Off)
O(f+g) = O(max(f,g))

CISC320, FO3, Lec2, Liao 9

“little-oh of g of n”

o(g(n)) = { f(n): for any positive constant c, there exists a
constant n, such that 0 < f(n) < ¢ g(n) for all nz ng}

Meaning:
o o(g(n)) contains functions in O(g(n)) excluding those in ©(g(n)).
o f(n) becomes insignificant relative to g(n) as n approaches
infinity:
lim, _, . f(n)/g(n) =0.

e.g., 2n = o(n?), but 2n? # o(n?).
e.g., Ig(n) = o(vh) (Proof by using L’Hopital rule)

CISC320, FO3, Lec2, Liao 10

Typical asymptotic complexities are

O(lg(n)), logarithmic (sub-linear)
O(n), linear

©(n Ig(n)), n-log-n

©(n?), quadratic

©(nd), cubic

O(27), exponential

Note:
o Logarithms:
= lgn=log,n;
= Inn=log, n;
= log, b=log, b/log, a
= Under the big Oh, the base of a logarithm does not matter.
o Factorial n! grows faster than exponential
= nl'=o(n")
« nl= of2)
= Ig(n!) = ©(n Ig(n))
u See Section 3.2 in CLRS for more details

CISC320, FO5, Lec2, Liao 1

