
1

CISC320, F05, Lec2, Liao 1

CISC 320 Introduction to Algorithms
Fall 2005

Measuring algorithm performance
Big O

CISC320, F05, Lec2, Liao 2

Measure the time complexity
What is the unit of measurement?

In terms of seconds
a faster CPU takes less time; needs to run algorithms on the same
machines for fair comparisons.

In terms of machine instructions, i.e., instructions/second (MIPS)
hard to estimate number of machine instructions based on psuedo

code, also compiler dependent
In terms of lines of (pseudo) code executed
In terms of number (or cost) of basic operations

What is considered basic?
RAM model of computation (see pp. 21, CLRS 2.2)

How does the “time” depend on the input and input size?
Large size will take longer time
Same size, some input will take longer time than others

Worst-case
Best-case
Average-case

CISC320, F05, Lec2, Liao 3

Example: Sequential search of an unordered array E

int seqSearch (int[] E, int n, int k)
1 int ans, index;
2 ans = -1;
3 for (i = 0; i < n; i++) {
4 if(k == E[i])
5 ans = i;
6 break;
7 return ans;

Worst-case: Twc(n) = 3 + 2n
Best-case: T(n) = 4
Average-case: ???

Overhead
of running
line 1,2,
and 7

CISC320, F05, Lec2, Liao 4

Average case:

If I is an instance of size n of the problem and D is the set of all distinct
possible instances of size n, then the average case or the expected
time is

Tavg(n) = ΣI∈D Pr(I)T(I)

Si is the event that E[i] = k
Tsucc(n) = Σ0≤i≤(n-1) Pr(Si|succ)T(Si)

= Σ0≤i≤(n-1) (1/n) (2i +4)
= 3 + n

Tavg (n) = Pr(succ) Tsucc(n) + Pr(fail) Tfail(n)
= 50% (3+n) + 50% (3+2n)
= 3 + (3/2)n

CISC320, F05, Lec2, Liao 5

Lessons learned:
Worst-case: the most commonly used

worst-case gives the upper bound, i.e., guarantees the
algorithm will never take any longer
worst-case actually happens quite often
Worst-case is not much worse than the average (the
previous example is the case)

Average: harder to analyze
Best-case: not that useful

CISC320, F05, Lec2, Liao 6

Big Oh, etc.
Upper bound: O(g(n)) = { f(n): there exist positive
constant c and n0 such that 0 ≤ f(n) ≤ c g(n) for all n≥ n0}

Meaning: g(n) grows faster up to a constant factor than
any functions in O(g(n)).

Lower bound: Ω(g(n)) = { f(n): there exist positive
constant c and n0 such that 0 ≤ c g(n) ≤ f(n) for all n≥ n0 }

Tight bound: Θ(g(n)) = { f(n): there exist positive constant
c1, c2 and n0 such that 0 ≤ c1 g(n) ≤ f(n) ≤ c2 g(n) for all n≥
n0 }

2

CISC320, F05, Lec2, Liao 7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CISC320, F05, Lec2, Liao 8

Examples:
3n2 + 5 n + 24 = Θ(n2)

Proof: By definition, we need to find c1, c2, and n0
such that for all n ≥ n0

c1n2 ≤ 3n2 + 5 n + 24 ≤ c2n2 (1)

Divide (1) by n2,
c1 ≤ 3+ 5 /n + 24 / n2 ≤ c2 (2)

The Inequalities in (2) hold for all n > 5, c1 = 3, and
c1 = 5.

QED

R les s mmari ed from obser ations

CISC320, F05, Lec2, Liao 9

Properties of Asymptotic Notation and
Comparison of Functions

Transitivity
f ∈ O(g), g ∈ O(h) => f ∈ O(h);

f ∈ Θ(g), g ∈ Θ(h) => f ∈ Θ(h);

f ∈ Ω(g), g ∈ Ω(h) => f ∈ Ω(h).

Reflexivity
f ∈ O(f(n)); f ∈ Θ(f(n)); f ∈ Ω(f(n)).
Symmetry
f ∈ O(g) g ∈ Ω(f)

f ∈ Θ(g) => g ∈ Θ(f)

O(f+g) = O(max(f,g))

CISC320, F05, Lec2, Liao 10

“little-oh of g of n”
o(g(n)) = { f(n): for any positive constant c, there exists a

constant n0 such that 0 ≤ f(n) ≤ c g(n) for all n≥ n0}

Meaning:
o(g(n)) contains functions in O(g(n)) excluding those in Θ(g(n)).
f(n) becomes insignificant relative to g(n) as n approaches
infinity:

limn → ∞ f(n)/g(n) = 0.

e.g., 2n = o(n2), but 2n2 ≠ o(n2).
e.g., lg(n) = o(√n) (Proof by using L’Hopital rule)

CISC320, F05, Lec2, Liao 11

Typical asymptotic complexities are

Θ(lg(n)), logarithmic (sub-linear)
Θ(n), linear
Θ(n lg(n)), n-log-n
Θ(n2), quadratic
Θ(n3), cubic
Θ(2n), exponential

Note:
Logarithms:

lg n = log 2 n;
ln n = loge n;
loga b = logc b / logc a
Under the big Oh, the base of a logarithm does not matter.

Factorial n! grows faster than exponential
n! = o(nn)
n! = ω(2n)
lg(n!) = Θ(n lg(n))

See Section 3.2 in CLRS for more details

