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CISC 320 Introduction to Algorithms
Fall 2005

Lecture 14
Minimum Spanning Tree 

and 
Greedy Algorithms
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Definitions
Spanning tree: given a connected, undirected 
graph G=(V,E), a spanning tree is a subgraph of 
G that is an undirected tree and contains all the 
vertices of G.
Minimum spanning tree (MST): is a spanning tree 
with minimum weight. The weight of a subgraph is 
the sum of the weights of the edges in the 
subgraph. 
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How to find MST?
Using depth-first or breadth-first search to 
traverse the graph will yield a spanning tree, but 
the found spanning tree is not guaranteed to be a 
MST.

Need a different scheme to traverse the graph
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Optimization problem & Greedy approach
Pick a starting point randomly
“grow” step by step, each step is the best among 
all possible choices
Stop when a stopping criterion is satisfied

Note: being greedy in a short term may NOT lead to 
the overall best solution
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Growing a MST

Definitions
Tree vertices: vertices that are in the tree 
constructed so far
Fringe vertices: not in the tree, but adjacent to 
some tree vertices
Unseen vertices: all others.
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MST-Prim(G,w)
1. Initialize all vertices as unseen
2. Select an arbitrary vertex s to start the tree, mark s as tree vertex
3. Mark all vertices adjacent to s as fringe
4. While there are fringe vertices
5. select an edge of minimum weight between a  tree vertex t and  

a fringe vertex v
6. mark v as tree and add edge (tv) to the tree
7. mark all unseen vertices adjacent to v as fringe
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Managing the Fringe with a priority queue

MST-Prim(G, w, r)
1. for each u ∈V[G]
2. key[u] ← ∞
3. P[u] ← nil
4. key[r] ← 0
5. Q ← V[G]
6. while Q is not empty                                    // |v| times
7. u ← Extract-Min(Q)                            // O(log(v))
8. for each v ∈ Adj[u]                            // O(E), combined with line 6 
9. if v ∈ Q and w(u,v) < key[v]
10. then p[v] ← u
11. key[v] ← w(u.v)              // O(log(v)) time to prioritize v in Q 

Total running time:  O(V lg V + E lg V)

O(V) to build a binary heap  
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Definitions
Minimum spanning tree property: Let T be any 
spanning tree of a connected, weighted graph G. 
For any edge uv of G that is not in T, if uv is 
added to T it creates a cycle and uv is a 
maximum-weight edge on that cycle, then T has 
the minimum spanning tree property.

Theorem In a connected, weighted graph G = 
(V,E,W), a spanning tree T is a MST iff T has 
the MST property.
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Correctness of Prim’s MST algorithm
Each time an edge from a tree vertex to a fringe 
vertex is added into the tree, so never is a cycle 
created. 
All vertices will be added to the tree eventually. 
Therefore the final tree is a spanning tree.
It is also a minimum spanning tree, because

At each step, the so far constructed tree has the MST 
property in its induced graph of G.    
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Proof by induction:
Let Tk be the tree in k-th step. Let Gk be the subgraph of G 
induced by Tk (i.e., uv is an edge in Gk if it is an edge in G and 
both u and v are in Tk)
T1 has MST property of G1.
Let assume it is true up to arbitrary k>0. 
At step k+1, vertex v is added, and v has edge with some vertices 
u1, …, ud in Tk. For definiteness, assume vu1 is the edge of 
minimum weight among all possibilities. Now Tk+1 = Tk + vu1, and 
Gk+1 = Gk + vu1 +…+ vud. 
To prove Tk+1 is MST of Gk+1, we need to prove, for any edge xy
in Gk+1 but not in Tk+1, if add xy to Tk+1, xy will be the maximum 
weight edge in the cycle thus created. 
See next slide for an example.
At step |V|, tree T|V| contains all vertices in G,  and G itself is the 
induced graph by T|V| . Therefore, Spanning tree T|V| is the MST 
of G.
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It is impossible to have edge rt such that W(rt) > W(vui)

Suppose t is added in later than r, then Prim algorithm 
will add edge (u1v) or (uiv) instead of (rt), since v is in 
the fringe and has an edge of smaller weight.
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Kruskal MST Algorithm
MST-Kruska(G, w)
1. Initialize set A as empty   // to store a forest of trees
2. Build a min priority queue Q of edges of G, prioritized by weight w
3. Initialize a union-find structure, sets, in which each vertex of G is in its 

own set.
4. while Q is not empty
5. (u,v) = Extract-Min(Q)
6. if (FIND-Set(u) ≠ FIND-Set(v)) // sure v and w not in the same tree
7. A ← A ∪ (u,v)                       //  add edge (u,v) to A
8. Union(u,v)
9. return A  // this is a MST

NOTE: if there are degeneracy in edge weights, MST will not be unique, 
depending on how ties are resolved in the priority queue.  
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Kruskal algorithm: example
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w Edge
1 (gh)
2 (ci) (fg)
4 (ab)
5 (cf)
6 (gi)

w Edge
7 (cd) (hi)
8 (ah) (bc)
9 (de)
10 (ef)
11 (bh)

Edge Action Sets                                          

(gh) add {a}, {b}, {c}, {d}, {e}, {f}, {g,h}, {i}

(ci) add {a}, {b}, {c,i}, {d}, {e}, {f}, {g,h}

(fg) add {a}, {b}, {c,i}, {d}, {e}, {f,g,h}

(ab) add {a,b}, {c,i}, {d}, {e}, {f, g, h}

(cf) add {a,b}, {c,f,g,h,i}, {d}, {e}

(gi) reject

(cd) add {a,b}, {c,d,f,g,h,i}, {e}

(hi) reject

(ah) add {a,b,c,d,f,g,h,i}, {e}

(de) add {a,b,c,d,e,f,g,h,i}
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Kruskal algorithm

Time analysis
Initialization: O(V)    Make-Set for each vertex
Deleting all edges from the queue: Θ(E log E)
Find-Set called 2|E| times, Union called |V| times. 
The cost is O( (E + V) α(V) ), where α(V) is a very 
slowly growing function defined in Section 21.4.
Since the graph is assumed to be connected, E≥
V-1. Therefore the cost is O(E α(V) ).

Total worst-case time: Θ(E log E)


