

How to find MST? • Using depth-first or breadth-first search to traverse the graph will yield a spanning tree, but the found spanning tree is not guaranteed to be a MST. • u = u = u = u• Need a different scheme to traverse the graph

Definitions □ Minimum spanning tree property: Let T be any Correctness of Prim's MST algorithm spanning tree of a connected, weighted graph G. Each time an edge from a tree vertex to a fringe For any edge uv of G that is not in T, if uv is vertex is added into the tree, so never is a cycle added to T it creates a cycle and uv is a created maximum-weight edge on that cycle, then T has All vertices will be added to the tree eventually. the minimum spanning tree property. □ Therefore the final tree is a spanning tree. □ It is also a minimum spanning tree, because **Theorem** In a connected, weighted graph G = At each step, the so far constructed tree has the MST (V,E,W), a spanning tree T is a MST iff T has property in its induced graph of G. the MST property. CISC320, F05, Lec14, Lizo CISC320, F05, Lec14, Liao 10 9

11

Proof by induction:

- T₁ has MST property of G₁.
- □ Let assume it is true up to arbitrary k>0.
- Let assume it is true up to anothrary k>0.
 At step k+1, vertex v is added, and v has edge with some vertices u₁, ..., u_i in T_k. For definiteness, assume vu₁ is the edge of minimum weight among all possibilities. Now T_{k+1} = T_k + vu₁, and G_{k+1} = G_k + vu₁ + ... + vu_d.
 To prove T_{k+1} is MST of G_{k+1}, we need to prove, for any edge xy in G_{k+1} but not in T_{k+1}, if add xy to T_{k+1}, xy will be the maximum weight edge in the cycle thus created. See next slide for an example. At step [V], tree T_[V] contains all vertices in G, and G itself is the induced graph by T_[V]. Therefore, Spanning tree T_[V] is the MST of G.

CISC320, F05, Lec14, Lizo

2

MS	T-Kruska(G, w)		
1. 2. 3.	Initialize set A as empty // to store a forest of trees Build a min priority queue Q of edges of G, prioritized by weight w Initialize a union-find structure, sets, in which each vertex of G is in its own set. while O is not empty		
		i.	(u,v) = Extract-Min(Q)
			if (FIND-Set(u) ≠ FIND-Set(v)) // sure v and w not in the same tree
	$A \leftarrow A \cup (u,v)$ // add edge (u,v) to A		
	Union(u,v)		
9.	return A // this is a MST		
10	TE: if there are degeneracy in edge weights, MST will not be unique, depending on how ties are resolved in the priority queue.		

