
1

CISC320, F05, Lec14, Liao 1

CISC 320 Introduction to Algorithms
Fall 2005

Lecture 14
Minimum Spanning Tree

and
Greedy Algorithms

CISC320, F05, Lec14, Liao 2

Definitions
Spanning tree: given a connected, undirected
graph G=(V,E), a spanning tree is a subgraph of
G that is an undirected tree and contains all the
vertices of G.
Minimum spanning tree (MST): is a spanning tree
with minimum weight. The weight of a subgraph is
the sum of the weights of the edges in the
subgraph.

CISC320, F05, Lec14, Liao 3

How to find MST?
Using depth-first or breadth-first search to
traverse the graph will yield a spanning tree, but
the found spanning tree is not guaranteed to be a
MST.

Need a different scheme to traverse the graph

u v

w s

8 8

1

1
1

CISC320, F05, Lec14, Liao 4

Optimization problem & Greedy approach
Pick a starting point randomly
“grow” step by step, each step is the best among
all possible choices
Stop when a stopping criterion is satisfied

Note: being greedy in a short term may NOT lead to
the overall best solution

CISC320, F05, Lec14, Liao 5

Growing a MST

Definitions
Tree vertices: vertices that are in the tree
constructed so far
Fringe vertices: not in the tree, but adjacent to
some tree vertices
Unseen vertices: all others.

CISC320, F05, Lec14, Liao 6

MST-Prim(G,w)
1. Initialize all vertices as unseen
2. Select an arbitrary vertex s to start the tree, mark s as tree vertex
3. Mark all vertices adjacent to s as fringe
4. While there are fringe vertices
5. select an edge of minimum weight between a tree vertex t and

a fringe vertex v
6. mark v as tree and add edge (tv) to the tree
7. mark all unseen vertices adjacent to v as fringe

2

CISC320, F05, Lec14, Liao 7

Managing the Fringe with a priority queue

MST-Prim(G, w, r)
1. for each u ∈V[G]
2. key[u] ← ∞
3. P[u] ← nil
4. key[r] ← 0
5. Q ← V[G]
6. while Q is not empty // |v| times
7. u ← Extract-Min(Q) // O(log(v))
8. for each v ∈ Adj[u] // O(E), combined with line 6
9. if v ∈ Q and w(u,v) < key[v]
10. then p[v] ← u
11. key[v] ← w(u.v) // O(log(v)) time to prioritize v in Q

Total running time: O(V lg V + E lg V)

O(V) to build a binary heap

CISC320, F05, Lec14, Liao 8

u v

w s

8 8

1

1
1

S u

v

1

8

Fringe
vertices

The tree
so far

S

v
1

1

Fringe
vertices

The tree
so far

u

w

1

CISC320, F05, Lec14, Liao 9

Definitions
Minimum spanning tree property: Let T be any
spanning tree of a connected, weighted graph G.
For any edge uv of G that is not in T, if uv is
added to T it creates a cycle and uv is a
maximum-weight edge on that cycle, then T has
the minimum spanning tree property.

Theorem In a connected, weighted graph G =
(V,E,W), a spanning tree T is a MST iff T has
the MST property.

CISC320, F05, Lec14, Liao 10

Correctness of Prim’s MST algorithm
Each time an edge from a tree vertex to a fringe
vertex is added into the tree, so never is a cycle
created.
All vertices will be added to the tree eventually.
Therefore the final tree is a spanning tree.
It is also a minimum spanning tree, because

At each step, the so far constructed tree has the MST
property in its induced graph of G.

CISC320, F05, Lec14, Liao 11

Proof by induction:
Let Tk be the tree in k-th step. Let Gk be the subgraph of G
induced by Tk (i.e., uv is an edge in Gk if it is an edge in G and
both u and v are in Tk)
T1 has MST property of G1.
Let assume it is true up to arbitrary k>0.
At step k+1, vertex v is added, and v has edge with some vertices
u1, …, ud in Tk. For definiteness, assume vu1 is the edge of
minimum weight among all possibilities. Now Tk+1 = Tk + vu1, and
Gk+1 = Gk + vu1 +…+ vud.
To prove Tk+1 is MST of Gk+1, we need to prove, for any edge xy
in Gk+1 but not in Tk+1, if add xy to Tk+1, xy will be the maximum
weight edge in the cycle thus created.
See next slide for an example.
At step |V|, tree T|V| contains all vertices in G, and G itself is the
induced graph by T|V| . Therefore, Spanning tree T|V| is the MST
of G.

CISC320, F05, Lec14, Liao 12

t

u1

ui

v

Tk

Edge added in Tk+1

r

vertex added in Tk+1

11

10

12

It is impossible to have edge rt such that W(rt) > W(vui)

Suppose t is added in later than r, then Prim algorithm
will add edge (u1v) or (uiv) instead of (rt), since v is in
the fringe and has an edge of smaller weight.

3

CISC320, F05, Lec14, Liao 13

Kruskal MST Algorithm
MST-Kruska(G, w)
1. Initialize set A as empty // to store a forest of trees
2. Build a min priority queue Q of edges of G, prioritized by weight w
3. Initialize a union-find structure, sets, in which each vertex of G is in its

own set.
4. while Q is not empty
5. (u,v) = Extract-Min(Q)
6. if (FIND-Set(u) ≠ FIND-Set(v)) // sure v and w not in the same tree
7. A ← A ∪ (u,v) // add edge (u,v) to A
8. Union(u,v)
9. return A // this is a MST

NOTE: if there are degeneracy in edge weights, MST will not be unique,
depending on how ties are resolved in the priority queue.

CISC320, F05, Lec14, Liao 14

Kruskal algorithm: example

a

b c d

e

h

i

g f

8 7

1

2

4

8

4

10

9
2

7

11 14
6

w Edge
1 (gh)
2 (ci) (fg)
4 (ab)
5 (cf)
6 (gi)

w Edge
7 (cd) (hi)
8 (ah) (bc)
9 (de)
10 (ef)
11 (bh)

Edge Action Sets

(gh) add {a}, {b}, {c}, {d}, {e}, {f}, {g,h}, {i}

(ci) add {a}, {b}, {c,i}, {d}, {e}, {f}, {g,h}

(fg) add {a}, {b}, {c,i}, {d}, {e}, {f,g,h}

(ab) add {a,b}, {c,i}, {d}, {e}, {f, g, h}

(cf) add {a,b}, {c,f,g,h,i}, {d}, {e}

(gi) reject

(cd) add {a,b}, {c,d,f,g,h,i}, {e}

(hi) reject

(ah) add {a,b,c,d,f,g,h,i}, {e}

(de) add {a,b,c,d,e,f,g,h,i}

CISC320, F05, Lec14, Liao 15

Kruskal algorithm

Time analysis
Initialization: O(V) Make-Set for each vertex
Deleting all edges from the queue: Θ(E log E)
Find-Set called 2|E| times, Union called |V| times.
The cost is O((E + V) α(V)), where α(V) is a very
slowly growing function defined in Section 21.4.
Since the graph is assumed to be connected, E≥
V-1. Therefore the cost is O(E α(V)).

Total worst-case time: Θ(E log E)

