Topological sort

Theorem: A directed graph G is acyclic if and only if a DFS of G yields no back edges.

Proof:
- If DFS(G) yields a back edge (u,v), then there is a cycle in G.
- Suppose G has a cycle c. Edge (u,v) is part of c, and v is the first vertex on c discovered by DFS(G). All other vertices on c form a white path from v to u. By White path theorem, u is a descendant of v and edge (u,v) becomes a back edge. (Because DFS-visit(v) won’t return to v until all reachable vertices are reached. When it reaches u, (u,v) is a back edge.)

Running Time
- DFS part: $O(V+E)$
- Insert each of the $|V|$ vertices onto the front of the linked list: $O(V)$
- Total time: $O(V+E)$

Correctness:
If G is a dag, then for any edge $(u,v) \in E \Rightarrow f[u] > f[v]$ when (u,v) is explored, u is GRAY.
1. v is also GRAY. Then (u,v) is a back edge. This means G is not a dag.
2. v is WHITE. Then v is a descendant of u. Therefore v is finished before u, namely $f[v] < f[u]$.
3. v is BLACK. Then v is already finished, i.e., $f[v] < f[u]$.

Strongly connected component

Definition: A SCC of a digraph $G = (V,E)$ is a maximal set of vertices $U \subseteq V$ such that every pair of vertices are reachable from each other in G (why not just in G?).

Q: Is it possible that u and v are in a SCC and there are edges (u,x) and (x,v), but x is not in the same SCC?

SCC(G)
1. Call DFS(G) to compute finishing times $f[u]$ for each vertex u.
2. Compute G^T.
3. Call DFS(G^T), but in the main loop of DFS, consider the vertices in order of decreasing $f[u]$ (as computed in step 1), that is, take vertices from the finishStack.
4. Output vertices of each tree (in the depth-first forest of step 3) as a separate SCC.
Exercise: Condensation graph (or called component graph) is a dag.

Exercise: Design an algorithm to determine whether or not a given undirected graph contains a cycle. Your algorithm should run in $O(V)$ time, independent of $|E|$.