
1

CISC320, F05, Lec13, Liao 1

CISC 320 Introduction to Algorithms
Fall 2005

Lecture 13
Topological Sort and Strongly

Connected components

CISC320, F05, Lec13, Liao 2

Topological sort

Directed Acyclic Graph (DAG)

Topological order of a dag G = (V, E) is
a linear ordering of all vertices
If G contains an edge (u,v), then u appears before v in the
ordering

TopologicalSort(G)

1. Call DFS(G) to compute finishing times f[u] for each vertex u.
2. As soon as each vertex is finished, insert it onto the front of a

linked list
3. Return the linked list of vertices.

CISC320, F05, Lec13, Liao 3

Topological sort
Theorem: A directed graph G is acyclic iif a DFS of G

yields no back edges.
Proof:

- If DFS(G) yields a back edge (u,v), then there is a cycle in G.
(why?)

- Suppose G has a cycle c. Edge (u,v) is part of c, and v is the first
vertex on c discovered by DFS(G). All other vertices on c form a
white path from v to u. By White path theorem, u is a descendant of
v and edge (u,v) becomes a back edge. (Because DFS-visit(v) won’t
return to v until all reachable vertices are reached. When it reaches
u, (u,v) is a back edge.)

u v

…

CISC320, F05, Lec13, Liao 4

Topological sort

Running time:
DFS part: O(V+E)
Insert each of the |V| vertices onto the front of the linked list: O(V)

Total time: O(V+E)

Correctness:
If G is a dag, then for any edge (u,v) ∈ E ⇒ f[u] > f[v]

when (u,v) is explored, u is GRAY.

1. v is also GRAY. Then (u, v) is a back edge. This means G is
not a dag.

2. v is WHITE. Then v is a descendant of u. Therefore v is
finished before u, namely f[v] < f[u].

3. v is BLACK. Then v is already finished, i.e., f[v] < f[u].

CISC320, F05, Lec13, Liao 5

Topological sort

undershorts

pants

belt

socks

shirt

jacket

shoes

tie

watch

1/8

2/5

9/10

13/14

17/18

3/4

6/7

12/15

11/16

jacketundershorts pants beltsocks shirtshoes tiewatch

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

Example

CISC320, F05, Lec13, Liao 6

Strongly connected component

Definition: A scc of a digraph G = (V,E) is a maximal set of vertices
U (⊆V) such that every pair of vertices are reachable from
each other in G (why not just in U?).

Q: is it possible that u and v are in a scc and there are edges
(u,x) and (x,v), but x is not in the same scc?

SCC(G)
1. Call DFS(G) to compute finishing times f[u] for each vertex u;

push u onto finishStack when it is finished.
2. Compute GT

3. Call DFS(GT), but in the main loop of DFS, consider the
vertices in order of decreasing f[u] (as computed in step 1), that
is, take vertices from the finishStack.

4. Output vertices of each tree (in the depth-first forest of step 3)
as a separate SCC

2

CISC320, F05, Lec13, Liao 7

Strongly connected component

A

F

D

B

C E

G

A

F

D

B

C E

G

ABDF

EG

C

Exercise:
Condensation graph
(or called component
graph) is a dag.

CISC320, F05, Lec13, Liao 8

Strongly connected component

A

F

D

B

C E

G

A

F

D

B

C E

G

E
G
A
F
B
D
C

A

F

D

B

C E

G

1. DFS(G)
2. Compute GT

3. DFS(GT) following finish stack

finishStack

4. Each tree yielded by DFS(GT) is a SCC

tree1

tree2

scc2

scc1

scc3

A

F

D

B

C E

G

scc1scc3

scc2

tree1

tree2

CISC320, F05, Lec13, Liao 9

Strongly connected component

Running time of SCC(G):

DFS(G): O(V+E)
Compute GT: O(V+E) (Exercise)
Call DFS(GT): O(V+E)

Total time: O(V+E)

Space usage: O(V+E) using adjacent list representation.

Correctness:
1. each DF tree can contain one or more SCCs, never contains partial SCC.

(DFS push a topological ordering of condensation graph of G onto the
finishStack)

2. In DFS(GT), each DF tree can contain only one SCC, because there is no
edge to go to the next SCC. (all edges in condensation graph of G are
reversed)

CISC320, F05, Lec13, Liao 10

DFS on undirected graphs

Similar to DFS on directed graphs
- No cross edges. Why?

Exercise: Design an algorithm to determine
whether or not a given undirected graph
contains a cycle. Your algorithm should run in
O(V) time, independent of |E|.

