CISC 320 Introduction to Algorithms
Fall 2005

Lecture 12
Graphs and Depth First Search
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Graphs
o Represent more complex relations (in contrast to, e.g.,
linear ordering) among data, for example,
Airline route map
Flowcharts
Computer networks
Problems on graphs
o Easy (running time linear in the number of vertices)
o Medium (polynomial)
o Hard (NP-complete):

Note: one of the fascinating aspects of graph problems is that
very slight changes in the way a problem is formulated can
often radically affect the problem’s difficulty level.
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Definitions
o Graph (or undirected graph)

is a pair G = (V, E) where V is a set whose elements are called
V?r‘(ices, and E is a set of unordered pairs of distinct elements
of V.

o Directed graph (or digraph)
is a pair G = (V, E) where V is a set whose elements are called
{//er‘(ices, and E is a set of ordered pairs of distinct elements of

o Weighted graph
is a triple G = (V, E, W) where (V, E) is a graph (directed or
undirected) and W is a function from E into the real numbers.
For an edge e, W(e) is called the weight of e.
o Complete graph
There is an edge between each pair of vertices.
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Definitions

o A path from v to w in a graph G = (V,E) is a sequence of
edges VyVq, V4V, ..., V1V, suchthatv =vyand v, =w. The
length of the path is k. A simple path is a path such that v,
Vy,..., Vi are all distinct.

o Connected graph

A graph is connected if and only if, for each pair of vertices
v and w, there is a path from v to w. If the graph is a
digraph, then it is called strongly connected.
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Representation
Adjacency matrix
V={1,2..n}
Alijl =1, if (ij) €E
0, otherwise
12 3 456 7
Space usage:
V2 1 0110000
O(v?) 2 1011000
3 1101010
4 0110010
5 0000O0T1O0
6 001110 1
7 0000O0T10
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Representation

Adjacency list

Space usage:

O(V+E) 1 | za-Es
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‘ Representation

= Adjacency matrix (weighted graphs)
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‘ Traversing Graphs

= Systematic search of every edge and vertex
of graph (directed or undirected)

o Efficiency: each edge is visited no more than
twice

o Correctness: no vertex is missed
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Breadth-first search

= Starts from a source s.
= Explores every vertices reachable from s, in order of
increasing distance from s:
o Visits all vertices at distance k from s before discovering
any vertices at distance k + 1.
= Three colors
o White: vertices undiscovered
o Gray: vertices discovered but have white adjacent vertices

o Black: vertices discovered and all neighbors also
discovered.
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Breadth-First Search

Computes link distance of all vertices from root s
Use FIFO queue (enqueue at back, dequeue at front)

BFS(G, s)
for each vertex u e V[G] - {s}
color[u] «— WHITE
du] oo
plu] = NIL // pointer to parent node. This give rise to an in-tree, called BFS tree.
color[s] < GRAY
dfs] <0
p[s] < NIL
Q — empty
enqueue(Q, s)
while Q # empty
do u — dequeue(Q)
for each v e Adj[u]
do if color[v] = WHITE
then color[v] — GRAY
d[v] < d[u] +1
p[v] «<u
enqueue(Q,v)
color[u] « BLACK
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| BFS example
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‘ Breadth-First Search

Running time:

Initialize as WHITE: O(V)

Each vertex is enqueued and dequeued once: O(1)

V vertices: O(V)

Adjacent list of each vertex is scanned only once: ©(E)

0O 0 0 O

Total time: O(V+E)
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Depth-First Search (DES)

DFS(G)
for each vertex u € V[G]
do color[u] <~ WHITE
time < 0
for each vertex u € V[G]
do if color[u] = WHITE
then DFS-Visit(u)

DFS-Visit(u)
color[u] < GRAY
d[u] < time // record discovery time
time < time +1 /I global time increase by one
for each v € Adij[u] Il explore all adjacent nodes of u

do if color[v] = WHITE
then DFS-Visit(v)
color{u] <~ BLACK // finish with u, and mark it black
flu] < time /I record finishing time
time < time + 1
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DFS

Running time
o For each vertex u, DFS-visit is called

o During DFS-visit(u), loop on line 4-6 is executed
|Adj[u]| times.

> uev Adu]l =O(E)
o Therefore, the total running time of DFS is O(V+E)

o
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DFS

DFS: Parenthesis Theorem

o Represent discovery of u with left parenthesis “(u”

o Represent finishing u by right parenthesis “u)”

o The history of discoveries and finishings makes a well-formed
expression, i.e., the parentheses are properly nested.

Or more formally, for any two vertices u and v, exactly one of the
following three conditions holds:

o

Interval [d[u], f[u]] and [d[v], f[v]] are entirely disjoint

Interval [d[u], f[u]] is contained entirely within [d[v], f[v]], and uis a
descendant of v in the depth-first search tree

Interval [d[v], f[v]] is contained entirely within [d[u], f[u]], and v is a
descendant of u in the depth-first search tree.

o

[s}
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Parenthesis theorem: example

12 3 4 56 7 8 9 10111213 14

(A(@B (CC (D B)F FA E
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White-path theorem: In any DFS of a graph
G, a vertex w is a descendant of a vertex v in
a depth-first search tree if and only if, at the
time vertex v is discovered (just before
coloring it gray), there is a path in G from v to
w consisting entirely of white vertices.
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DEFS edge classification

Depth-first search tree: The edges that lead to undiscovered
vertices during a depth-first search of a digraph G form a rooted
tree.

Depth-first search forest: If not all vertices are reachable from the
starting vertex, a complete traversal of G partitions the vertices
into several trees, which together are called depth-first search
forest.

Tree edge: (GRAY to WHITE) form spanning forest with no
cycles

Back edge: (GRAY to GRAY) w is ancestor of v, then vw is a
back edge

Forward edge: (GRAY to BLACK)

Cross edge: (GRAY to BLACK)
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White-Path Theorem: In any DFS of a graph G, a vertex w is a
descendant of a vertex v in a depth-first search tree if and only if,
at the time vertex v is discovered (just before coloring it gray),
there is a path in G from v to w consisting entirely of white
vertices.

Proof:

- (Only if) If w is a descendant of v, by the parenthesis theorem,
the path of tree edges from v to w is a white path.
- (If) By induction on k, the length of a white path from v to w.
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Traversing Graphs
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