
1

CISC320, F05, Lec12, Liao 1

CISC 320 Introduction to Algorithms
Fall 2005

Lecture 12
Graphs and Depth First Search

CISC320, F05, Lec12, Liao 2

Graphs
Represent more complex relations (in contrast to, e.g.,
linear ordering) among data, for example,

Airline route map
Flowcharts
Computer networks

Problems on graphs
Easy (running time linear in the number of vertices)
Medium (polynomial)
Hard (NP-complete):

Note: one of the fascinating aspects of graph problems is that
very slight changes in the way a problem is formulated can
often radically affect the problem’s difficulty level.

CISC320, F05, Lec12, Liao 3

Definitions
Graph (or undirected graph)

is a pair G = (V, E) where V is a set whose elements are called
vertices, and E is a set of unordered pairs of distinct elements
of V.

Directed graph (or digraph)
is a pair G = (V, E) where V is a set whose elements are called

vertices, and E is a set of ordered pairs of distinct elements of
V.

Weighted graph
is a triple G = (V, E, W) where (V, E) is a graph (directed or

undirected) and W is a function from E into the real numbers.
For an edge e, W(e) is called the weight of e.

Complete graph
There is an edge between each pair of vertices.

CISC320, F05, Lec12, Liao 4

Definitions
A path from v to w in a graph G = (V,E) is a sequence of
edges v0v1, v1v2 ,…, vk-1vk such that v = v0 and vk = w. The
length of the path is k. A simple path is a path such that v0,
v1,…, vk are all distinct.

Connected graph
A graph is connected if and only if, for each pair of vertices
v and w, there is a path from v to w. If the graph is a
digraph, then it is called strongly connected.

CISC320, F05, Lec12, Liao 5

Representation
Adjacency matrix

V = {1, 2, …, n}
A[i,j] = 1, if (i.j) ∈E

0, otherwise

Space usage:
Θ(V2)

1 2

3

5 6

4

7

0 1 1 0 0 0 0

1 0 1 1 0 0 0

1 1 0 1 0 1 0

0 1 1 0 0 1 0
0 0 0 0 0 1 0
0 0 1 1 1 0 1
0 0 0 0 0 1 0

1 2 3 4 5 6 7

1
2
3
4
5
6
7

CISC320, F05, Lec12, Liao 6

Representation

Adjacency list

1 2

3

5 6

4

7

1

1

2

6

3

6

2 3

2

4 5

4 6

3 6

7

43

1

2

3

4

5

6

7

Space usage:

Θ(V+E)

2

CISC320, F05, Lec12, Liao 7

Representation

Adjacency matrix (weighted graphs)

1 2

3

5 6

4

7

0 25 ∞ ∞ ∞ ∞ ∞

1 2 3 4 5 6 7

1
2
3
4
5
6
7

5

25

10

42

14

11

18
14 6

16 32

∞ 0 10 14 ∞ ∞ ∞
5 ∞ 0 ∞ ∞ 16 ∞

∞ 6 18 0 ∞ ∞ ∞

∞ ∞ ∞ ∞ 0 ∞ ∞
∞ ∞ ∞ 32 42 0 14

∞ ∞ ∞ ∞ ∞ 11 0

CISC320, F05, Lec12, Liao 8

Traversing Graphs

Systematic search of every edge and vertex
of graph (directed or undirected)

Efficiency: each edge is visited no more than
twice
Correctness: no vertex is missed

A

F

D

B

C E

G

CISC320, F05, Lec12, Liao 9

Breadth-first search

Starts from a source s.
Explores every vertices reachable from s, in order of
increasing distance from s:

Visits all vertices at distance k from s before discovering
any vertices at distance k + 1.

Three colors
White: vertices undiscovered
Gray: vertices discovered but have white adjacent vertices
Black: vertices discovered and all neighbors also
discovered.

CISC320, F05, Lec12, Liao 10

Breadth-First Search
Computes link distance of all vertices from root s
Use FIFO queue (enqueue at back, dequeue at front)

BFS(G, s)
1. for each vertex u ∈ V[G] – {s}
2. color[u] ← WHITE
3. d[u] ←∞
4. p[u] = NIL // pointer to parent node. This give rise to an in-tree, called BFS tree.
5. color[s] ← GRAY
6. d[s] ← 0
7. p[s] ← NIL
8. Q ← empty
9. enqueue(Q, s)
10. while Q ≠ empty
11. do u ← dequeue(Q)
12. for each v ∈ Adj[u]
13. do if color[v] = WHITE
14. then color[v] ← GRAY
15. d[v] ← d[u] +1
16. p[v] ← u
17. enqueue(Q,v)
18. color[u] ← BLACK

CISC320, F05, Lec12, Liao 11

BFS example

1
r

0
s

2
t

3
u

2
v

1
w

2
x

3
y

1
r

0
s

2
t

3
u

2
v

1
w

2
x

∞
y

1
r

0
s

2
t

3
u

2
v

1
w

2
x

3
y

1
r

0
s

2
t

3
u

2
v

1
w

2
x

3
y

1
r

0
s

2
t

3
u

2
v

1
w

2
x

3
y

x
2

v
2

u
3

1
r
0
s

∞
t

∞
u

∞
v

1
w

∞
x

∞
y

∞
r

0
s

∞
t

∞
u

∞
v

∞
w

∞
x

∞
y

1
r

0
s

2
t

∞
u

2
v

1
w

2
x

∞
y

1
r

0
s

2
t

∞
u

∞
v

1
w

2
x

∞
y

s
0

w
1

r
1

t
2

x
2

v
2

r
1

t
2

x
2

u
3

v
2

y
3

u
3

y
3

y
3

empty

s

w r

t x v

u y

CISC320, F05, Lec12, Liao 12

Breadth-First Search

Running time:
Initialize as WHITE: O(V)
Each vertex is enqueued and dequeued once: O(1)
V vertices: O(V)
Adjacent list of each vertex is scanned only once: Θ(E)

Total time: O(V+E)

3

CISC320, F05, Lec12, Liao 13

Depth-First Search (DFS)
DFS(G)
1. for each vertex u ∈ V[G]
2. do color[u] ←WHITE
3. time ← 0
4. for each vertex u ∈ V[G]
5. do if color[u] = WHITE
6. then DFS-Visit(u)

DFS-Visit(u)
1. color[u] ← GRAY
2. d[u] ← time // record discovery time
3. time ← time +1 // global time increase by one
4. for each v ∈ Adj[u] // explore all adjacent nodes of u
5. do if color[v] = WHITE
6. then DFS-Visit(v)
7. color[u] ← BLACK // finish with u, and mark it black
8. f[u] ← time // record finishing time
9. time ← time + 1

CISC320, F05, Lec12, Liao 14

DFS

Running time
For each vertex u, DFS-visit is called
During DFS-visit(u), loop on line 4-6 is executed
|Adj[u]| times.
∑ u ∈ V |Adj[u]| = Θ(E)
Therefore, the total running time of DFS is Θ(V+E)

CISC320, F05, Lec12, Liao 15

DFS
DFS: Parenthesis Theorem

Represent discovery of u with left parenthesis “(u”
Represent finishing u by right parenthesis “u)”
The history of discoveries and finishings makes a well-formed
expression, i.e., the parentheses are properly nested.

Or more formally, for any two vertices u and v, exactly one of the
following three conditions holds:

Interval [d[u], f[u]] and [d[v], f[v]] are entirely disjoint
Interval [d[u], f[u]] is contained entirely within [d[v], f[v]], and u is a
descendant of v in the depth-first search tree
Interval [d[v], f[v]] is contained entirely within [d[u], f[u]], and v is a
descendant of u in the depth-first search tree.

CISC320, F05, Lec12, Liao 16

Parenthesis theorem: example
A

F

D

B

C E

G

A

B

C D

1 2 3 4 5 6 7 8 9 10 11 12 13 14

F

E

G

(A (B (C C) (D D) B) (F F) A) (E (G G) E)

CISC320, F05, Lec12, Liao 17

White-path theorem: In any DFS of a graph
G, a vertex w is a descendant of a vertex v in
a depth-first search tree if and only if, at the
time vertex v is discovered (just before
coloring it gray), there is a path in G from v to
w consisting entirely of white vertices.

CISC320, F05, Lec12, Liao 18

DFS edge classification
Depth-first search tree: The edges that lead to undiscovered
vertices during a depth-first search of a digraph G form a rooted
tree.
Depth-first search forest: If not all vertices are reachable from the
starting vertex, a complete traversal of G partitions the vertices
into several trees, which together are called depth-first search
forest.
Tree edge: (GRAY to WHITE) form spanning forest with no
cycles
Back edge: (GRAY to GRAY) w is ancestor of v, then vw is a
back edge
Forward edge: (GRAY to BLACK)
Cross edge: (GRAY to BLACK)

4

CISC320, F05, Lec12, Liao 19

White-Path Theorem: In any DFS of a graph G, a vertex w is a
descendant of a vertex v in a depth-first search tree if and only if,
at the time vertex v is discovered (just before coloring it gray),
there is a path in G from v to w consisting entirely of white
vertices.

Proof:
- (Only if) If w is a descendant of v, by the parenthesis theorem,

the path of tree edges from v to w is a white path.
- (If) By induction on k, the length of a white path from v to w.

v

x1

xi
w

CISC320, F05, Lec12, Liao 20

Traversing Graphs

A

F

D

B

C E

G

back

ba
ck

cross

cro
ssforward

