
1

CISC320, F05, Lec10, Liao 1

CISC 320 Introduction to Algorithms
Fall 2005

Lecture 10
Amortized Analysis

CISC320, F05, Lec10, Liao 2

Amortized Cost
Why use amortized cost?
Remember, we use the number of (basic) operations as
a measure of running time. However, how can such a
measure be useful if same operation (e.g., each cFind)
may cost differently, depending when it is applied in a
sequence of operations?
In an amortized analysis, the time required to
perform a sequence of data structure operations
is averaged over all the operations performed.

Amortized cost differs from average-case cost,
because there is no probability involved.
Amortized cost is the average performance of each
operation in the worst-case.

2

CISC320, F05, Lec10, Liao 3

Three techniques for amortized cost analysis
Aggregate method

Amortized cost = total actual cost / number of operations

Accounting method
Amortized cost = actual cost + accounting cost
The sum of the accounting cost is nonnegative

Potential method
Amortized cost = actual cost + increment of potential
Potential never below zero

CISC320, F05, Lec10, Liao 4

A simple example
stack operations

Push(S,x)
Pop(S)
MultiPop(S,k):

pop k top objects of S.
If S has less than k objects,

then pop all in S.
a sequence of n Push, Pop and MultiPop operations on initially empty stack.
Worst-case cost:

For each operation:
Push: O(1)
Pop: O(1)
MultiPop: O(n) since the stack size is at most n

There are n operations (possibly O(n) MultiPop operations), the upper bound is
O(n2).

Problem: O(n2) upper bound is not tight.

3

CISC320, F05, Lec10, Liao 5

Aggregate method
Although a single MultiPop can be expensive, any

sequence of n Push, Pop, and MultiPop
operations on an initially empty stack can cost at
most O(n).

Proof: Pop (either directly or from inside MultiPop)
can be called n times since there can be at most n
objects (by n Push operations).

The amortized cost of an operation is the average:
O(n)/n = O(1)

CISC320, F05, Lec10, Liao 6

Accounting method
Data structure comes with a “bank account”
Every operation allotted a fixed $ cost (its amortized cost)
If actual cost less than allotted amount, the difference is
deposited into bank
If actual cost more than allotted amount, withdraw from
bank to pay for the operation
Catch: always have a non-negative balance
Benefit: we can use an operation’s amortized cost, which is
a fixed number, and we know that n times the amortized
cost is the upper bound of the actual cost of n operations.

4

CISC320, F05, Lec10, Liao 7

Actual cost:
Push 1
Pop 1
MultiPop min(k,s)

Amortized cost:
Push 2
Pop 0
MultiPop 0

Will the bank account be balanced?
Yes. A stack of plates in a cafeteria. We start with an empty stack. Push a plate
on the stack and pop a plate off the stack cost $1 each. Now, when push, we
pay $2. One dollar for the actual cost, and one dollar as a credit. Since every
plate on the stack has a dollar of credit on it, pop is free.

CISC320, F05, Lec10, Liao 8

Potential method
Prepaid work as potential that can be released to pay for
future operations
Initial data structure D0, on which n operations are to be
performed. Di is the data structure after i-th operation.
Potential Φ: Di → Φ(Di)
Amortized cost ci of the i-th operation is its actual cost plus
the increase in potential due to the operation

ci = c i + Φ(Di) - Φ(Di-1)
The total amortized cost of the n operations

∑ ci = ∑ (c i + Φ(Di) - Φ(Di-1))
= ∑ (c i) + Φ(Dn) - Φ(D0)

5

CISC320, F05, Lec10, Liao 9

Potential Φ: number of objects on the stack.
D0 is empty stack, and Φ(D0) = 0
Φ(Di) ≥ 0 = Φ(D0)
Amortized cost:

Push
ci = c i + Φ(Di) - Φ(Di-1) = 1 + 1 = 2

MultiPop(S, k)
ci = c i + Φ(Di) - Φ(Di-1) = k’ – k’ = 0

where k’ = min(k,s) is the actual number objects removed
from the stack.

CISC320, F05, Lec10, Liao 10

Amortized analysis of Build-heap
Task: to build n elements into a max-heap.
Without loss of generality, let’s assume n is a power of 2, so the n elements can be mapped into a

complete binary tree. There are n/2 -1 interior nodes and heapify needs to apply to each one of
them.

Actual cost = lg(h) where h is the height of the node that heapify is applied.
Amortized cost = 2.

Use the accounting method.

Deposit $2 to each node. Comparison of a pair of keys will cost $1. We will show by induction that the
total amount of deposit (=2n) is sufficient to cover the cost of n/2 -1 heapify operations.

Start with the lowest level (let’s call it level-1) of interior nodes. Each has two children nodes. There
will be 2 comparisons, cost $2, and $4 will be left in this subheap of 3 nodes. This is true for each
level-1 subheap. Once done with this level, move one level up. Each node has $2, plus 2 x $4
from two subheaps, there are $10, out of which $4 will cover the cost of heapify (worst-case). So,
$6 is left for every level 2 subheap. Therefore, we do induction: each level-i subheap has $(2i + 2).
When we heapify a level-(i+1) heap, the total amount available is 2 x $(2i + 2) + $2, which is $
(2i+1+ 6). The total cost for heapifying a level-(i+1) heap is 2 log(i+1) = i+1. Therefore, we always
have enough to cover the expenses, i.e., the bank account will never go bankruptcy! So we can
safely say each heapify only cost $2, in amortized sense, i.e., the actual cost exceeding $2 (the
case when it is applied to higher level subheaps) will be covered by the savings from these nodes
that are never got visited by the heapify.

