CISC 320 Introduction to Algorithms
Fall 2003

Lecture 9
Union-Find

Problem: to maintain dynamic equivalence relations
Applications:
- minimum spanning tree
- Equivalence declarations in Fortran
Equivalence relation R on a set S
- R is a binary relation
- R satisfies three properties for all $s, u, t \in S$
 1. Reflexive: $sR\!t$
 2. Symmetric: $sR\!t \iff tR\!s$
 3. Transitive: $sR\!t, tR\!u \iff sR\!u$

Task: a data structure (and algorithms) to support efficient operations w.r.t. equivalence relations, i.e., to represent, modify, and answer certain questions about an equivalence relation that changes during computation.

Operations
1. IS $s_i \equiv s_j$?
2. MAKE $s_i \equiv s_j$ (where $s_i \equiv s_j$ is not already true).

Example: $S = \{1, 2, 3, 4, 5\}$
equivalence classes to start: $\{1\}, \{2\}, \{3\}, \{4\}, \{5\}$
1. IS 2 \equiv 4? No
2. IS 3 \equiv 5? No
3. MAKE 3 \equiv 5. $\{1\}, \{2\}, \{3,5\}, \{4\}$
4. MAKE 2 \equiv 5. $\{1\}, \{2,3,5\}, \{4\}$
5. IS 2 \equiv 3? Yes
6. MAKE 4 \equiv 1. $\{1,4\}, \{2,3,5\}$
7. IS 2 \equiv 4? No
Implementations

Matrix

- \[R = \begin{bmatrix}
 1 & 2 & 3 & 4 & 5 \\
 1 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 1 & 0 \\
 0 & 0 & 1 & 0 & 1 \\
 0 & 0 & 1 & 0 & 1 \\
\end{bmatrix} \]

1. \(R(i,j) = 1 \) if \(i \neq j \), \(R(i,j) = 0 \) otherwise
2. IS takes \(O(1) \) time
3. MAKE requires copying rows, may be up to \(O(n^2) \)
4. A sequence of \(m \) MAKES and ISs at worst-case takes \(O(mn) \)
5. Space usage is \(O(n^2) \).

Array

- \[R = \begin{bmatrix}
 1 & 2 & 3 & 4 & 5 \\
\end{bmatrix} \]

1. IS \(i \equiv j \)?
 - Yes, if \(R[i] = R[j] \)
 - No, otherwise
2. MAKE \(i \equiv j \)
 - for \(k = 1 \) to \(n \), if \(R[k] = R[i] \) then \(R[k] = R[j] \)
3. Worst-case, a sequence of \(m \) MAKES and ISs will take \(O(mn) \).
1. IS 2 \equiv 4? No \quad \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}
2. IS 3 \equiv 5? No \quad \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}
3. MAKE 3 \equiv 5. \quad \{1\}, \{2\}, \{3,5\}, \{4\} \quad \begin{bmatrix} 1 & 2 & 5 & 4 & 5 \end{bmatrix}
4. MAKE 2 \equiv 5. \quad \{1\}, \{2,3,5\}, \{4\} \quad \begin{bmatrix} 1 & 5 & 5 & 4 & 5 \end{bmatrix}
5. IS 2 \equiv 3? Yes \quad \begin{bmatrix} 1 & 5 & 5 & 4 & 5 \end{bmatrix}
6. MAKE 4 \equiv 1. \quad \{1,4\}, \{2,3,5\} \quad \begin{bmatrix} 4 & 5 & 5 & 4 & 5 \end{bmatrix}
7. IS 2 \equiv 4? No \quad \begin{bmatrix} 4 & 5 & 5 & 4 & 5 \end{bmatrix}

- Union-Find: makeSet, find and union
 - makeSet is run on each element of S to make n singleton sets.
 - IS and MAKE are implemented as

 IS \, s_i \equiv s_j
 \quad t = \text{find}(s_i)
 \quad u = \text{find}(s_j)
 \quad \text{if } (t=u) \text{ then yes else no}

 MAKE \, s_i \equiv s_j
 \quad t = \text{find}(s_i)
 \quad u = \text{find}(s_j)
 \quad \text{union}(t,u)

 Because Union-Find is just an abstract data type, we need to provide concrete implementation.
In-tree representation of disjoint sets

In-tree operations:

- makeNode: construct a tree of one node
- setParent: change the parent of a node
- setNodeData: set an integer data value for the node
- isRoot: return true if the node has no parent
- parent: return the parent of the node
- nodeData: return the data value

Implementation of Union-Find

- makeSet: O(1)
- find: O(d) where d is the tree height
- union:

<table>
<thead>
<tr>
<th>#</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Union(1,2)</td>
</tr>
<tr>
<td>2</td>
<td>Union(2,3)</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>n-1</td>
<td>Union(n-1,n)</td>
</tr>
<tr>
<td>n</td>
<td>Find(1)</td>
</tr>
<tr>
<td>n+1</td>
<td>Find(1)</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>n+m</td>
<td>Find(1)</td>
</tr>
</tbody>
</table>

\[T = n + (n-1) + (m+1)n = O(nm) \]
- Weighted union
 - Keep tree as short as possible
 - When do union of two trees, make the tree with fewer nodes a subtree of the root of the other tree.
 - At root, assign a weight (total # of nodes, or height of the tree)

```c
wUnion(i, j)
    t = find(i);
    u = find(j);
    if(t.weight < u.weight)
        then union(t,u);
    else union(u,t);
```

<table>
<thead>
<tr>
<th>#</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>wUnion(1,2)</td>
</tr>
<tr>
<td>2</td>
<td>wUnion(2,3)</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>n-1</td>
<td>wUnion(n-1,n)</td>
</tr>
<tr>
<td>n</td>
<td>Find(1)</td>
</tr>
<tr>
<td>n+1</td>
<td>Find(1)</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>n+m</td>
<td>Find(1)</td>
</tr>
</tbody>
</table>

```
T = n + (n-1) + (m+1) = n + (n-1) + 2(n-1) + (m+1) = O(n+m)
```

```c
wUnion  find  union  find  find
```
Lemma 6.6 If trees grow by merging trees via wUnion, then any tree that has k nodes will have height at most $\lfloor \lg k \rfloor$.

Proof: induction on k.
Base case ($k = 1$): a tree with one node has height 0, and $\lg(1) = 0$.
Assume the lemma holds for trees that have size up to any arbitrary $k > 1$.
Let’s merge two trees T_1 (k_1 nodes) and T_2 (k_2 nodes).
we have $k_1 \leq k$ and $k_2 \leq k$, but $k_1 + k_2 > k$.
Because both T_1 and T_2 have nodes less than m, so $h_1 \leq \lg(k_1)$ and $h_2 \leq \lg(k_2)$.
The height h of the new tree T as a result of wUnion(T_1, T_2) is determined as
max(h_1, h_2+1)
where we assume $k_2 \leq k_1$.

T has $k' = (k_1 + k_2)$ nodes, and its height

$h = \max(h_1, h_2+1) < \max(\lg(k_1), \lg(k_2) + 1)$.

Clearly, $\lg(k_2) \leq \lg(k')$. Because $k_2 \leq k'/2$, so $\lg(k_2) \leq \lg(k') - 1$.
Therefore: $h \leq \lg(k')$. QED

Definition: Because disjoint sets are implemented as in-trees, the in-tree operations are called link operations.

Theorem 6.7 A Union-Find program of size m, on a set of n elements, performs

$\Theta(n+m \log(n))$ link operations in the worst case if wUnion is used.

Proof: With n elements, at most $n-1$ wUnions can be done, building a tree with at most n nodes. Trees can not be higher than $\lg(n)$.
Therefore, each find takes at most $\lg(n)$. There can be at most m finds. So the total number of link operations is less than $O(n+m \log(n))$.

It can be shown that, in worst-case, it must take $\Omega(n + m \log(n))$ link operations.
Path Compression
With path compression, find will make every encountered node directly point to the root.

After Find(x)
int cFind(int v)
 int root;
 1. int oldParent = parent[v];
 2. if(oldParent == -1)
 3. root = v;
 4. else
 5. root = cFind(oldParent);
 6. if(oldParent != root)
 7. parent[v] = root;
 8. return root;

Time Analysis: wUnion and cFind

Definition:
The height of node v, also called its rank, is the height of the subtree rooted at v.

Lemma 6.8 In the set S there are at most n/2^r node with rank r, for r ≥ 0.

Proof: Any tree with height r has at least 2^r nodes (Lemma 6.6). Since subtrees with rank r are disjoint, there can be at most n/2^r such subtrees.
Lemma 6.9 No node of S has rank greater than \(\lg(n) \).

Lemma 6.10 The ranks of the nodes on a path from a leaf to a root of a tree form a strictly increasing sequences. When a cFind operation changes the parent of a node, the new parent has higher rank than the old parent of that node.

Definition: log-star
\[
\log^*(j) = \{ \min i \mid \log^{(i)} j \leq 1 \}
\]
where
\[
\log^{(1)} j = \log j \\
\log^{(2)} j = \log(\log^{(1)} j) = \log(\log(j)) \\
\log^{(3)} j = \log(\log^{(2)} j) = \log(\log(\log(j))) \\
\ldots
\]

If function \(H \) is defined as follows
\[
H(0) = 1 \\
H(i) = 2^{H(i-1)} \quad \text{for } i > 0.
\]
then \(\log^*(j) \) is the least \(i \) such that \(H(i) \geq j \).

<table>
<thead>
<tr>
<th>(i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H(i))</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>16</td>
<td>65536</td>
<td>2^{65536}</td>
<td>??</td>
</tr>
<tr>
<td>(\log^*(i))</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>(\log^*(H(i)))</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Definition: Node blocks (called node groups in the text)
If a node has rank r, then it belongs to Block $\lg^*(1+r)$

- Block(0) has nodes of rank 0
- Block(1) has nodes of rank 1
- Block(2) has nodes of rank 2 to 3
- Block(3) has nodes of rank 4 to 15
- Block(4) has nodes of rank 16 to 65535
- Block(5) has nodes of rank 65536 to $(2^{65536} - 1)$

...
- Block(i) has nodes of rank $H(i-1)$ to $H(i) - 1$.

- For the set S of n nodes, how many blocks? $\lg^*(n+1)$

 Since no node in S can rank higher than $\lg(n)$, the maximum block index must be less than $\lg^*(1 + \lg(n)) = \lg^*(\lg(n+1) - 1) = \lg^*(n+1) - 1$.

 And the minimum block index is 0. Therefore, the # of blocks is $\lg^*(n+1)$

Amortized Cost

- Why use amortized cost?

 Remember, we use the number of (basic) operations as a measure of running time. However, how can such a measure be useful if same operation (e.g., each cFind) may cost differently, depending when it is applied in a sequence of operations?

- In an amortized analysis, the time required to perform a sequence of data structure operations is averaged over all the operations performed.
 - Amortized cost differs from average-case cost, because there is no probability involved
 - Amortized cost is the average performance of each operation in the worst case.
Three techniques for amortized cost analysis

- **Aggregate method**
 - Amortized cost = total actual cost / number of operations

- **Accounting method**
 - Amortized cost = actual cost + accounting cost
 - The sum of the accounting cost is nonnegative

- **Potential method**
 - Amortized cost = actual cost + increment of potential
 - Potential never below zero

A simple example

stack operations
- `Push(S, x)`
- `Pop(S)`
- `MultiPop(S, k)`: pop k top objects of S.
 - If S has less than k objects, then pop all in S.

a sequence of n Push, Pop and MultiPop operations on initially empty stack.

Worst-case cost:
- For each operation:
 - Push: O(1)
 - Pop: O(1)
 - MultiPop: O(n) since the stack size is at most n

There are n operations (possibly O(n) MultiPop operations), the upper bound is O(n²).

Problem: O(n²) upper bound is not tight.
- **Aggregate method**
 Although a single MultiPop can be expensive, any sequence of n Push, Pop, and MultiPop operations on an initially empty stack can cost at most $O(n)$.
 Proof: Pop (either directly or from inside MultiPop) can be called n times since there can be at most n objects (by n Push operations).
 The amortized cost of an operation is the average: $O(n)/n = O(1)$

- **Accounting method**
 - Data structure comes with a “bank account”
 - Every operation allotted a fixed $\$ cost (its amortized cost)
 - If actual cost less than allotted amount, the difference is deposited into bank
 - If actual cost more than allotted amount, withdraw from bank to pay for the operation
 - Catch: always have a non-negative balance
 - Benefit: we can use an operation’s amortized cost, which is a fixed number, and we know that n times the amortized cost is the upper bound of the actual cost of n operations.
Actual cost:
- Push: 1
- Pop: 1
- MultiPop: min(k,s)

Amortized cost:
- Push: 2
- Pop: 0
- MultiPop: 0

Will the bank account be balanced?
Yes. A stack of plates in a cafeteria. We start with an empty stack. Push a plate on the stack and pop a plate off the stack cost $1 each. Now, when push, we pay $2. One dollar for the actual cost, and one dollar as a credit. Since every plate on the stack has a dollar of credit on it, pop is free.

Potential method
- Prepaid work as potential that can be released to pay for future operations
- Initial data structure D_0, on which n operations are to be performed. D_i is the data structure after ith operation.
- Potential Φ: $D_i \rightarrow \Phi(D_i)$
- Amortized cost c_i of the ith operation is its actual cost plus the increase in potential due to the operation
 $c_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$
- The total amortized cost of the n operations
 $\sum c_i = \sum (c_i + \Phi(D_i) - \Phi(D_{i-1}))$
 $= \sum (c_i) + \Phi(D_n) - \Phi(D_0)$
Potential Φ: number of objects on the stack.
- D_0 is empty stack, and $\Phi(D_0) = 0$
- $\Phi(D_i) \geq 0 = \Phi(D_0)$

Amortized cost:
- **Push**
 $$c_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) = 1 + 1 = 2$$
- **MultiPop(S, k)**
 $$c_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) = k' - k' = 0$$
 where $k' = \min(k, s)$ is the actual number objects removed from the stack.

makeSet:
- Accounting cost is assigned as $4 \lg^*(n+1)$
- Actual cost is 1
- Amortized cost = $1 + 4 \lg^*(n+1)$

wUnion:
- Accounting cost is assigned as 0
- Actual cost is 1
- Amortized cost = 1
- **cFind(v)**
 - Path from v to the root contains nodes: \(w_0, w_1, \ldots, w_k \).
 - where \(w_0 \) is v and \(w_k \) is the root.
 - If \(k = 0 \) or \(1 \), accounting cost is assigned as zero.
 - For \(k \geq 2 \), the accounting cost is \(-2\) for each pair \((w_{i-1}, w_i)\), \(1 \leq i \leq k-1\), if nodes \(w_{i-1} \) and \(w_i \) are in the same block.
 - Actual cost is \(2k \).
 - Amortized cost = \(2 \lg^*(n+1) \).
Lemma 6.12 The sum of accounting costs is never negative
Proof:
- The sum of accounting costs of the initial makeSet operations is 4n lg*(n+1)
- -2 is charged for a node w if w is traversed by a cFind and w is in the same block as its parent and the parent is not a root. If w is in block i, then after cFind's traversal, w is assigned a new parent and if this new parent is in block i+1, then w can not be further associated with any negative charge. Therefore, w can not be associated with more withdrawals than there are ranks in its block. The number of ranks in block i is less than H(i).
- The number of withdrawals for all w in S is at most
 \[\sum_{i=0}^{\lfloor \log^* (n+1) \rfloor} H(i) \] (number of nodes in block i)
- Number of nodes in block i
 \[= \sum_{r=1}^{H(i)} \frac{(n/2)^r}{r} \leq \sum_{r=1}^{H(i)} \frac{n}{r} \leq n \sum_{r=1}^{H(i)} \frac{1}{r} \approx 2nH(i). \]
- Total withdrawals \[\leq \sum_{i=0}^{\lfloor \log^* (n+1) \rfloor} H(i) \] (number of nodes in block i)
- Each withdrawal is -2
- The sum of accounting costs is \[\geq 4n \log^*(n+1) - 4n \log^*(n+1) = 0. \]

Theorem 6.13 The number of link operations done by a Union-Find program implemented with wUnion and cFind, of length m on a set of n elements is in O((n+m) lg*(n)) in the worst case.

Proof: as analyzed above, amortized cost for each Union-Find operation is at most 1+4lg*(n+1). There are n-m operations including makeSets. So the total amortized cost is O((n+m)lg*(n+1)). This is also the upper bound for the total actual cost, because according to Lemma 6.12 the total actual cost never exceeds the total amortized cost.
Summary:
- Since $\log^* n$ grows so slowly, $O((n+m)\log^*(n))$ is slower than $O(n+m \log(n))$. Therefore, improvement is achieved by using both wUnio and cFind.