Problem: to construct a dynamic set that supports the dictionary operations: search, insert and delete.

Examples:
- dictionary: word key to definition
- compiler: symbol key to semantic data

Key types:
- Numerical
- Alphabet

Key space: the set of all possible keys.
Recall that we can search a sorted array quickly, so the question is Can we use array?

Case 1: if keys are integer, directly index into array.
Case 2: if keys are string of alphabets, convert to case 1 by first transforming characters to integers (say ASCII).

Dictionary operations are easily supported in such direct-address model.
- Each operation takes \(O(1) \) time.
- Problem: key space may be too huge.
 - e.g., names of at most 20 letters \(\Rightarrow \) size of key space \(= 26^{20} \approx 2^{100} \approx 10^{30} \)
 - In practice, while key space is huge, only a small portion is really used, say a few millions of names in our example.

Hashing

Hash function \(h \):
- \(h: U \rightarrow \{0, 1, \ldots, m-1\} \)
 - where \(U \) is the key space and typically \(m << |U| \).

Since \(m \) is smaller than \(|U| \), \(h \) can not be a one-to-one mapping.

Collisions: a collision occurs between keys \(k_1 \) and \(k_2 \) if \(h(k_1) = h(k_2) \).
Closed address hashing (chained hashing)
- Each position in hash table is pointer to head of a linked list.
- To insert elements into the table, add to head of list.

\[h(k_1) = h(k_2) = h(k_3) \]

Each position in hash table is pointer to head of a linked list. To insert elements into the table, add to head of list.

\[h(k) \]

Insert(T, x)
- Insert x at the head of list \(T[h(key[x])] \).
- worst-case running time is O(1).

Search(T, k)
- Search for an element with key k in list \(T[h(k)] \).
- worst-case running time is proportional to length of list \(T[h(k)] \).

Delete(T, x)
- Delete x from the list \(T[h(key[x])] \).
- worst-case running time is the time for searching x plus O(1) time for removing it from the list.

Example: \(h(x) = 5x \mod 8 \)
- \(h(1055) = 3 \)
- \(h(1492) = 4 \)
- \(h(1776) = 0 \)
- \(h(1812) = 4 \)
- \(h(1918) = 6 \)
- \(h(1945) = 5 \)

Uniform hashing: each key is equally likely to be hashed into any integer \([0, \ldots, m-1]\).

Load factor \(\alpha: n/m \), where n is the number of keys that will be actually stored in the table. That is, \(\alpha \) is the average length of lists. Therefore, average time for search = \(O(1 + \alpha) \).
If \(n = O(m) \), then \(\alpha = O(1) \).

All dictionary operations can be supported in \(O(1) \) time on average.

Open address hashing
- all elements stored in the array of the hash table (no linked lists).
- More space efficient
- Less flexible: load factor \(\alpha \) can not be larger than 1.
- Rehashing to resolve collisions.
 - If a key K is hashed to position i, which is already occupied, K is rehashed to an alternative location:
 \[\text{rehash} = (i + d) \mod m \]
 - where d is an increment computed from K.
 - Linear probing: \(d = 1 \)

Example: \(h(x) = 5x \mod 8 \), \(\text{rehash}(i) = (i + 1) \mod 8 \).
- \(h(1055) = 3 \)
- \(h(1492) = 4 \)
- \(h(1776) = 0 \)
- \(h(1812) = 4 \), but \(T[4] \) is occupied. Rehash(4) = (4 + 1) \mod 8 = 5, which is empty, so 1812 is stored in \(T[5] \).
- \(h(1918) = 6 \)
- \(h(1945) = 5 \), but \(T[5] \) is occupied. Rehash(5) = 6, \(T[6] \) is also occupied, so 6 is rehashed to 7, which is empty.
Search(T, key)
1. \(i = h(\text{key}); \)
2. \(\text{inc} = \text{hashInc(\text{key})}; // \text{for a general increment scheme} \)
3. while \((T[i] \neq \text{nil} \text{ and } i < m)\)
4. \(\text{if } (T[i] = \text{key}) \)
5. \(\text{then return } i; \)
6. \(i = \text{rehash}(i, \text{inc}); // i = i+1 \text{ for linear probing} \)
7. \(\text{return } \text{nil}; \)

Average time: for load factor \(\alpha = 1, \) time is \(\text{\textbf{\textless n}}. \)

Summary
- Hash tables are an effective data structure for implementing dictionaries.
- Worst-case: search may take as long as \(\Theta(n) \) time.
- Average-case: \(O(1) \).

Choice of Hash Functions
- Distribute keys uniformly into integer range \([0, 1, ..., m]\).
- Low collision rate.
- **Hashing method I: division**
 - \(h(k) = k \mod m \)
 - Must avoid certain values of \(m \).
 - Powers of 2: If \(m = 2^p \), \(h(k) \) is \(p \) lowest order bits of \(k \).
 - e.g., \(m = 8 = 2^3 \), \(0 \leq k < 128 \)
 - \(k = 107 = 1101011 \), \(h(k) = 011 = 3 \)
 - \(k = 43 = 0101011 \), \(h(k) = 011 = 3 \)
 - \(\ldots \)
 - There are 16 collisions on \(h(k) = 3 \).
 - Powers of 10: Similar argument.
 - Good values for \(m \) are primes not too close to exact power of 2.

Hashing method II: multiplication
- \(h(k) = k(mA \text{ mod } 1)^J \)
 - Where \(A \) is a constant, \(0 < A < 1 \).
 - e.g., \(A = (\sqrt{5} - 1)/2 \approx 0.6180339887 \ldots \)
 - \(m = 10000 \)
 - \(h(123456) = 10000 \times (123456 \times 0.61803\ldots \text{ mod } 1)^J \)
 - \(= 1 \times 10000 \times 0.0041151\ldots \text{ mod } 1)^J \)
 - \(= 41.151\ldots J \)
 - \(= 41 \).

- Optimal choice of \(A \) depends on characteristics of data (Knuth suggests the golden ratio).
- Choose \(m \) as power of 2.