Lecture 20

Review

- Algorithm design paradigm: Dynamic Programming, amortized computing
- Algorithms covered:
 - Divide and conquer: Binomial, Trinomial, Fibonacci, Fast Exponentiation
 - Greedy: Fractional Knapsack, Huffman Coding
 - Divide and conquer + Dynamic Programming
- NP-Completeness:
 - Reducibility, Isomorphism, Graph Coloring, Number Partitioning
- Approximation:
 - Approximation Algorithms: Greedy, Randomization
 - Approximation hardness of problems: On the hardness of approximating problems, hardness of approximation

Algorithm and Paradigm

Dynamic Programming

1. **KMP algorithm**

 - Given a pattern and a text string, find the first occurrence of the pattern.
 - The KMP algorithm works by pre-computing the partial match table.
 - The table helps in finding the next position in the pattern without re-computation.
 - Example:

     ```
     T: banana banana
     P: x
     i = 0, j = 0
     D[i][j] = 0
     i = 1, j = 0
     D[i][j] = 0
     i = 2, j = 1
     D[i][j] = 1
     i = 3, j = 1
     D[i][j] = 2
     i = 4, j = 2
     D[i][j] = 3
     i = 5, j = 3
     D[i][j] = 4
     i = 6, j = 4
     D[i][j] = 5
     i = 7, j = 5
     D[i][j] = 6
     i = 8, j = 6
     D[i][j] = 7
     i = 9, j = 7
     D[i][j] = 8
     i = 10, j = 8
     D[i][j] = 9
     ```
 - The first occurrence of the pattern is at position 3 in the text.

2. **Boyer-Moore algorithm**

 - The Boyer-Moore algorithm uses a different approach to find the pattern.
 - It skips positions in the text based on the pattern.
 - Example:

     ```
     Text: the quick brown fox
     Pattern: quick brown
     ```
 - First, skip the first occurrence of "quick" from position 1 to position 6.
 - Then, match the rest of the pattern.
 - The first occurrence is at position 2.

Example questions:

- Given a pattern and a text string, find the first occurrence of the pattern.
- Dynamic programming:
 - Procedure, and
 - Applications: string alignment, e.g., sw5-pb
- Polynomials and Matrices:
 - Understand Horner’s rule and Strassen’s algorithm
- NP-complete:
 - Concepts: P, NP, NP-Complete, NP-hard, polynomial reduction
 - Given a problem, prove it is NP complete
 - Given problems A and B, prove A is no harder than B.
- Parallel algorithms:
 - PRAM
 - NC class
 - Design parallel algorithms that solve a given problem using specified model (or variations).

The KMP algorithm

1. Skip outer iteration

   ```
   i = 3
   ```

2. Skip first inner iteration testing “n” vs “n” at outer iteration 1: 4

3. 9 comparisons are made for the first occurrence.

The Boyer-Moore algorithm

- If you wish to understand others you must

The numbers of positions we can “jump” forward when there is a mismatch depends on the test character being mad, say \(T_j \), more precisely, depends on \(T_j \)’s occurrence in pattern \(P \).

Only 18 comparisons are needed to find the first occurrence.

Example questions:

- Given a pattern and a text string, find the first occurrence of the pattern.
- Dynamic programming:
 - Procedure, and
 - Applications: string alignment, e.g., sw5-pb
- Polynomials and Matrices:
 - Understand Horner’s rule and Strassen’s algorithm
- NP-complete:
 - Concepts: P, NP, NP-Complete, NP-hard, polynomial reduction
 - Given a problem, prove it is NP complete
 - Given problems A and B, prove A is no harder than B.
- Parallel algorithms:
 - PRAM
 - NC class
 - Design parallel algorithms that solve a given problem using specified model (or variations).

Example problems:

- Given a pattern and a text string, find the first occurrence of the pattern.
- Dynamic programming:
 - Procedure, and
 - Applications: string alignment, e.g., sw5-pb
- Polynomials and Matrices:
 - Understand Horner’s rule and Strassen’s algorithm
- NP-complete:
 - Concepts: P, NP, NP-Complete, NP-hard, polynomial reduction
 - Given a problem, prove it is NP complete
 - Given problems A and B, prove A is no harder than B.
- Parallel algorithms:
 - PRAM
 - NC class
 - Design parallel algorithms that solve a given problem using specified model (or variations).

Example problems:

- Given a pattern and a text string, find the first occurrence of the pattern.
- Dynamic programming:
 - Procedure, and
 - Applications: string alignment, e.g., sw5-pb
- Polynomials and Matrices:
 - Understand Horner’s rule and Strassen’s algorithm
- NP-complete:
 - Concepts: P, NP, NP-Complete, NP-hard, polynomial reduction
 - Given a problem, prove it is NP complete
 - Given problems A and B, prove A is no harder than B.
- Parallel algorithms:
 - PRAM
 - NC class
 - Design parallel algorithms that solve a given problem using specified model (or variations).
Horners algorithm

To observe that \(p(x) \) can be rewritten as follows.

\[
p(x) = (\ldots (a_n x + a_{n-1}) x + a_{n-2}) x + \ldots + a_1) x + a_0.
\]

Horners poly(a, n, x)

1. \(p = a[n] \)
2. for i ← n-1 to 0
3. \(p = p \times x + a[i] \)
4. return p

Running time: \(n \) multiplications and \(n \) additions.

Handling Write Conflicts

- **CREW (Concurrent Read, Exclusive Write):** only one processor write in a particular cell at any one step; It is illegal to have more than one processor write to one cell at the same time.
- **CRCW (Concurrent Read, Concurrent Write):**
 - Common-Write model
 - Arbitrary-Write model
 - Priority-Write model

Example: A dominant set of a graph \(G \) is a subset of vertices \(W \) such that every vertex of \(G \) is either in \(W \) or is adjacent to a vertex in \(W \).

Decision Problem

- Input: A graph \(G \) and integer \(k \)
- Question: Does \(G \) have a dominant set of size at most \(k \)?

Optimization Problem:

- Input: A graph \(G \)
- Output: A smallest dominant set of \(G \)

The Claim: The optimization problem for dominant set is no harder than the decision problem.

Proof: Use Polynomial reduction:

1. For \(k \) from 1 to \(|G| \), call the algorithm for the decision problem as a subroutine on input \((G, k) \).
2. Initialize all vertices in \(G \) as unmarked. Now choose an unmarked vertex \(v \) in \(G \) and add a new vertex \(X \) attached by an edge to \(v \). Ask the decision algorithm if the modified graph \(G' \) has a dominant set of size \(k \). If yes, mark \(v \) as a member and remove the vertex \(X \). Repeat until \(k \) vertices are marked as members of the dominant set.

Performance: \(O(g(n)) \) time, \(n \) processors.
Problem: Boolean AND on n Bits
Input: Bits x_0, \ldots, x_{n-1}, as 0’s and 1’s, in $M[0], \ldots, M[n-1]$
Output: $x_0 \land \ldots \land x_{n-1}$ in $M[0]$

Solution 2 (CRCW)
commonWriteOr(M, n)
P: reads x_i from $M[i]$;
 If x_i is 0; then P writes 0 in $M[0]$.

Correctness: Since all the processors that write into $M[0]$ write the
same value, the program is a legal program under Common-Write
model.
Running time: It takes just two steps, regardless the input size.