Lecture 20
Review

Topis Coverage
- Algorithm design paradigm: Dynamic Programming, and parallel computing
- Algorithms covered:
 - String Matching: Knuth-Morris-Pratt algorithm, Boyer-Moore algorithm
 - Approximate String Matching
 - Polynomial and Matrices: Horner’s algorithm and Strassen’s algorithm
 - Parallel algorithms: CREW PRAM, CRCW (Common-Write) PRAM
- NP Completeness
 - P can be solved in polynomial time.
 - NP: solution can be verified in polynomial time.
 - NP-complete: as hard as any problem in NP. Known NP-complete problem can be polynomially reduced to this problem.
 - NP-completeness: problem A is problem B: Show A is hard.
 - If A is NP-complete and B is in NP, a polynomial reduction of A to B proves B is NP-complete too.
 - Method: Take any input x for A. Use it to construct an input y for B, such that
 1. the size of y is a polynomial in the size of x,
 2. the correct A answer for x is true if the correct B answer for y is true
 3. the correct B answer for y is true if the correct A answer for x is true.

How to prove a problem is in NP.
How to prove a problem is NP-complete
Familiarity with some well-known NP-complete problems:
- CNF SAT, Dominant Set, Graph Coloring, Hamiltonian Cycle, TSP (Travelling Salesman Problem)
- Approximate solutions to bin pack and TSP.

Format of Exam
- The exam is closed book and notes. The exam will have a heavy emphasis on
 understanding and applying the concepts.
- There will be four problems.
Example questions:
- Given a pattern, calculate its fail indices for KMP algorithm.
- Given a pattern and a text string, demo how KMP algorithm (or Boyer-Moore algorithm) works.
- Dynamic programming
 - Concept,
 - Procedure, and
 - Applications (string alignment, e.g., hw5 q2)
- Polynomials and Matrices
 - Understand Horner’s rule and Strassen’s algorithm
- NP-complete
 - Concepts: P, NP, NP-Complete, NP-hard, polynomial reduction
 - Given a problem, prove it is NP complete
 - Given problems A and B, prove A is no harder than B.
- Parallel algorithms
 - PRAM
 - NC class
 - Design parallel algorithms that solve a given problem using specified model (or variations).

The KMP algorithm

i=0: X	i=1: X
i=2: nanX	i=3: X
i=4: nano	i=5: X
i=6: nX	i=7: X
i=8: X	i=9: nX
i=10: X	

1. Skip outer iteration i = 3
2. Skip first inner iteration testing "n" vs "n" at outer iteration i = 4
3. 9 comparisons are made for find the first occurrence.
The Boyer-Moore algorithm

The numbers of positions we can "jump" forward when there is a mismatch depends on the text character being read, say $T[j]$, more precisely, depends on $T[j]$'s occurrence in pattern P.

Only 18 comparisons are needed to find the first occurrence.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>T</th>
<th>G</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>+4</td>
<td>-4</td>
<td>-4</td>
<td>-2</td>
<td>-8</td>
</tr>
<tr>
<td>C</td>
<td>-4</td>
<td>+4</td>
<td>-2</td>
<td>-4</td>
<td>-8</td>
</tr>
<tr>
<td>T</td>
<td>-4</td>
<td>-2</td>
<td>+4</td>
<td>-4</td>
<td>-8</td>
</tr>
<tr>
<td>G</td>
<td>-2</td>
<td>-4</td>
<td>-4</td>
<td>+4</td>
<td>-8</td>
</tr>
<tr>
<td>-</td>
<td>-8</td>
<td>-8</td>
<td>-8</td>
<td>-8</td>
<td>-8</td>
</tr>
</tbody>
</table>

where "-" stands for an blank space (i.e., a deletion) in a sequence.
Horner’s algorithm

To observe that \(p(x) \) can be rewritten as follows.

\[
p(x) = (\ldots(a_n x + a_{n-1})x + a_{n-2})x + \ldots + a_1)x + a_0.
\]

Horner-poly(a, n, x)

1. \(p = a[n] \)
2. for \(i \leftarrow n-1 \) to 0
3. \(p \leftarrow p * x + a[i] \)
4. return \(p \)

Running time: \(n \) multiplications and \(n \) additions.
In practice, a polynomial reduction from the optimization problem \(U \) to the decision problem \(V \) can be constructed as follows: Suppose there is an algorithm \(S \) for the decision problem, then use \(S \) as a subroutine to construct an algorithm \(W \) that solves the optimization problem. Assume that \(S \) takes constant time. If \(W \) runs in polynomial time, then the reduction is in polynomial time. Therefore, we found algorithm \(W \) that solves \(U \) in as much time as needed (module a polynomial) for solving \(V \).

Example: A dominant set of a graph \(G \) is a subset of vertices \(W \) such that every vertex of \(G \) is either in \(W \) or is adjacent to a vertex in \(W \).

Decision Problem
- Input: A graph \(G \) and integer \(k \)
- Question: Does \(G \) have a dominant set of size at most \(k \)?

Optimization Problem:
- Input: A graph \(G \)
- Output: A smallest dominant set of \(G \)

The Claim: the optimization problem for dominant set is no harder than* the decision problem.

Proof: Use Polynomial reduction.

1. **Step 1:** For \(i \) from 1 to \(|G|\), call the algorithm for the decision problem as a subroutine on input \((G_i)\). This shall give us \(M \), the size of the smallest dominant set of \(G \).

2. **Step 2:** Initialize all vertices in \(G \) as unmarked. Now choose an unmarked vertex \(v \) in \(G \), add a new vertex \(X \) attached by an edge to \(v \). Ask the decision algorithm if the modified graph has a dominant set of size \(M \). If yes, then mark \(v \) as a member of the dominant set and leave \(X \) in the graph. If no, mark \(v \) as non-member and remove the vertex \(X \). Repeat until \(M \) vertices are marked as members of the dominant set.

* Module a polynomial reduction.
Input: Keys $x[0], \ldots, x[n-1]$, initially in memory cells $M[0], \ldots, M[n-1]$, and integer n.
Output: The largest key will be left in $M[0]$.

Remarks: cells $M[n]$ to $M[2n-1]$ are initialized to $-\infty$.

```c
parTournamentMax(M, n)
    int incr;
    Write (some very small value) into $M[n+pid]$
    incr = 1;
    While (incr < n) {
        Key big, tmp0, tmp1;
        Read $M[pid]$ into tmp0.
        Read $M[pid + incr]$ into tmp1.
        big = max(tmp0, tmp1);
        write big into $M[pid]$.
        incr = 2 * incr;
    }
```

Performance: $O(\lg n)$ time, n processors.

Handling Write Conflicts

- **CREW (Concurrent Read, Exclusive Write):**
 only one processor write in a particular cell at any one step; It is illegal to have more than one processor write to one cell at the same time.

- **CRCW (Concurrent Read, Concurrent Write):**
 - Common-Write model
 - Arbitrary-Write model
 - Priority-Write model
Problem Boolean \textbf{AND} on \emph{n} Bits
\begin{itemize}
 \item Input: Bits x_0, \ldots, x_{n-1}, as 0's and 1's, in $M[0], \ldots, M[n-1]$
 \item Output: $x_0 \land \ldots \land x_{n-1}$ in $M[0]$.
\end{itemize}

Solution 2 (CRCW)
\begin{itemize}
 \item \texttt{commonWriteOr}(M, n)
 \item P_i reads x_i from $M[i]$;
 \item If x_i is 0; then P_i writes 0 in $M[0]$.
\end{itemize}

Correctness: Since all the processors that write into $M[0]$ write the same value, the program is a legal program under Common-Write model.

Running time: It takes just two steps, regardless the input size.