A lower bound for adding \(n \) integers

Problem: adding \(n \) integers

- **Input**: \(x[0], \ldots, x[n-1] \) are integers (as large as \(n \) bits), initially in memory cells \(M[0], \ldots, M[n-1] \).
- **Output**: \(x[0] + \ldots + x[n-1] \) is left in \(M[0] \).

Algorithm: \(\text{parAdd} \)

Theorem 14.13 Any Priority-Write PRAM with \(p \) processors that computes \(\text{parAdd} \) must do at least \(\lg(n) + 1 - \lg \lg(4p) \) steps.

Corollary: Any CREW PRAM, Common-Write PRAM, Arbitrary-Write PRAM, or Priority-Write PRAM that computes \(\text{parAdd} \) must do at least \((\log n)\) steps if \(p \) is bounded by any polynomial in \(n \).

Sketch of proof

- \(n \) integers, each of \(n \) bits, are stored in \(M[0], \ldots, M[n-1] \)
- Simplification (to reduce the size of input and output space)
 - Input of \(\log(n+1) \) bits
 - Memory cells in \(M \) of \(\log(n+1) \) bits
 - \(p \) processors
 - \# of distinct inputs is \(2^n \)
 - \# of possible different outputs is \(2^p \)
 - \# of distinct states a processor can be in after \(t \) steps, with \(S_0 = 1 \)
 - \(v_t \): number of distinct values that could be in a memory cell after \(t \) steps, with \(v_0 = 2 \)
 - \# of processors
 - For \(t > 0 \) we have
 - \(v_t \leq 2v_{t-1} \)
 - For \(t > 1 \)
 - \(v_t \leq pS_{t-1} + v_{t-1} \)
 - \(v_t \leq (pS_{t-1} + v_{t-2}) \leq \cdots \)
 - \(v_t \leq (v_1)^{pS_t} \)
 - \(v_t \leq (v_1)^{pS_t} \leq (4p)^t \)
 - To distinguish \(2^n \) possible different outputs, a parallel algorithm has to have \(v_t \geq 2^n \) after \(T \) steps.
 - \(2^{\lg (v_t)} \geq 2^n \) after \(T \) steps.
 - Therefore, \(T \geq \frac{\lg(n) + 1 - \lg \lg(4p)}{\lg(v_1)} \) if \(p \) is bounded by a polynomial in \(n \).