Lecture 17

NP-Complete Problems

Approximate Algorithms

Polynomial Reductions — a formal way to say "as hard as".

- Reduction is a transformation from one problem to another.
 - Formally, let T be a function from input set for a decision problem U into the input set for a decision problem V, such that
 - For every string x, if x is a yes input for U, then $T(x)$ is a yes input for V.
 - For every string x, if x is a no input for U, then $T(x)$ is a no input for V. (Or equivalently, $T(x)$ is a yes input for V, then x is a yes input for U).
 - T is a polynomial reduction when it can be computed in polynomial bounded time.
 - Problem U is polynomially reducible to V, denoted as $U \leq_p V$, if there exists a polynomial reduction from U to V.

Example: A dominating set of a graph G is a subset of vertices W such that every vertex of G is either in W or is adjacent to a vertex in W.

Decision Problem:
- Input: A graph G and integer k.
- Question: Does G have a dominating set of size at most k?

Optimization Problem:
- Input: A graph G.
- Output: A smallest dominating set of G.

The Claim: The optimization problem for dominating set is no harder than the decision problem.

Proof: Use Polynomial reduction.

- **Step 1:** For input from 1 to G, call the algorithm for the decision problem as a subroutine on input (G,k). This will give us M, the size of the smallest dominating set of G.
- **Step 2:** Initialize all vertices in G as unmarked. Now choose an unmarked vertex v in G.
 - Add a new vertex X attached by an edge to v. Ask the decision algorithm if the modified graph has a dominating set of size M. If yes, then mark v as a member of the dominating set and remove the vertex X. Repeat until all vertices are marked as members of the dominating set.

* *Module a polynomial reduction.

Brief Recap

- A problem is said to be very hard, but its solution can be verified relatively easily, i.e., in polynomial time. Is this problem in NP?
- Given two problems A and B, how do we check the claim that A is as hard as or even harder than B, in another word, A is "B-hard"?
- What is NP-Complete?
- What is Cook’s Theorem? Why is it important?
- What are the three requirements for Polynomial Reductions?

What to do in case of NP-Complete problems?

- Use a heuristic
- Find an approximate algorithm
- Use exponential time algorithm anyway
Let $S = \{s_1, \ldots, s_n\}$ be an input, in non-increasing order, for the bin packing problem and let $\text{opt}(S)$ be the optimal number of bins for S. All of the objects placed by FFD in extra bins (i.e., bins with index larger than $\text{opt}(S)$) have size at most $1/3$.

Proof

Let i be the index of the first object placed by FFD in bin $\text{opt}(S)+1$. S_i must be no larger than $1/3$.

Suppose $S_i > 1/3$. Then $S_i, \ldots, S_{\lfloor \text{opt}(S) \rfloor}$, at most two objects each. For some $k > 0$, the first k bins hold one object each, and bins $B_{\lfloor \text{opt}(S) \rfloor}, \ldots, B_{\text{opt}(S)}$ hold two objects each. $S_i > 1/3$ can not fit even by an optimal solution. But an optimal solution must fit object in one of the first $\text{opt}(S)$ bins. Therefore, the assumption that $S_i > 1/3$ must be false.

Lemma 13.10

For an input $S = \{s_1, \ldots, s_n\}$ the number of objects placed by FFD in extra bins is at most $\text{opt}(S) - 1$.

Proof

Assume FFD puts $\text{opt}(S)$ objects with sizes $t_1, \ldots, t_{\text{opt}(S)}$ in extra bins. Let b_i be the used space for each of the first $\text{opt}(S)$ bins. Then

$$\sum_{i=1}^{\text{opt}(S)} s_i \geq \sum_{i=1}^{\text{opt}(S)} t_i = \sum_{i=1}^{\text{opt}(S)} (b_i + t_i) > \text{opt}(S)$$

However, since all the objects fit in $\text{opt}(S)$ bins, we must have

$$\sum_{i=1}^{\text{opt}(S)} s_i < \text{opt}(S)$$

Therefore, the assumption of $\text{opt}(S)$ objects being put into extra bins is not valid.

Travelling Salesman Problem (TSP)

Optimization problem: Given a complete, weighted graph, find a minimum-weight Hamiltonian cycle.

Decision Problem: Given a complete, weighted graph and an integer k, is there a Hamiltonian cycle with total weight at most k?

Nearest-Neighbor Strategy

Select an arbitrary vertex v to start the cycle C. $V = S$

While there are vertices not yet in C, select an edge vw of minimum weight where w is not in C. Add edge vw to C. $V = \emptyset$. Add the edge vw to C.
Shortest-Link Strategy
shortestLink(TSP(V,E,W))
R = E; // R is remaining edges
C = empty; // C is cycle edges
while R is not empty
 Remove the lightest edge, vw, from R
 If we do not make a cycle with edges in C
 and we would not be the third edge in C incident on v or w
 Add vw to C
 Add the edge connecting the endpoints of the path in C
 return C.

Performance evaluation
Theorem 13.22 Let A be any approximation algorithm for the TSP. If there is any constant c such that A(G) ≤ c∗(G) for all instances, then P = NP.

Why DNA computing?
- The information density of DNA is greater than that of silicon: 1 bit can be stored in about one cubic nanometer.
- Operations on DNA are massive parallel

Adleman’s DNA algorithm for Hamiltonian path problem
1. Generate DNA strands to represent paths in G
2. Use biochemical processes to extract strands satisfying the following
 a. Extract strands that start at vstart and end at vend (discard the rest)
 b. Extract strands that include n vertices (Discard the rest)
 c. Extract strands that contain every vertex
 d. Any strand that remains represents a Hamiltonian path from v start to vend. If no strand remains, G has no such path