CISC 320 Introduction to Algorithms
Fall 2003

Lecture 12
Shortest Paths

Growing a shortest-path tree
- Start at source vertex \(s \) and "branches out" by selecting edges that lead to new vertices
- For each vertex \(z \) in the fringe, there is at least one tree vertex \(v \) such that \(vz \) is an edge of \(G \).
 - why?
 (otherwise how can \(z \) be in the fringe)
- Choose \(v \) such that \(d(s,v) + W(vz) \) is minimized

Theorem 8.6 Let \(G = (V,E,W) \). \(V' \) is a subset of \(V \), and \(V' \) contains the source \(s \). Let \(d(s,y) \) be the shortest distance in \(G \) from \(s \) to \(y \), for each \(y \) in \(V' \). If edge \(yz \) is chosen to minimize \(d(s,y) + W(yz) \) over all edges with \(y \) in \(V' \) and \(z \) in \(V - V' \), then the path consisting of a shortest path from \(s \) to \(y \) followed by the edge \(yz \) is a shortest path from \(s \) to \(z \) in \(V' \).

Proof: For any other path \(P' \) from \(s \) to \(z \), we have

\[
W(P') = d(s,y) + W(yz) \leq d(s,v) + W(vz)
\]

That is why vertex \(z \) is chosen by the algorithm to expand \(V' \).

Dijkstra’s Shortest-Path Algorithm

Given a weighted graph \(G = (V,E,W) \) and a source vertex \(s \), find a shortest path from \(s \) to each vertex \(v \).

Dijkstra(G,w,s)
1. Initialize all vertices as unseen
2. Start the tree with the specified source vertex \(s \); reclassify it as tree
3. Define \(d(s,s) = 0 \)
4. Reclassify all vertices adjacent to \(s \) as fringe
5. While there are fringe vertices
 1. Select a tree vertex \(t \) and a fringe vertex \(v \)
 2. Such that \(d(s,t) + W(tv) \) is minimum
 3. Reclassify \(v \) as tree; add edge \(tv \) to the tree
 4. Define \(d(s,v) = d(s,t) + W(tv) \)
 5. Reclassify all unseen vertices adjacent to \(v \) as fringe

Dijkstra’s Shortest-Path Algorithm
The tree so far

\[d(A, B) + W(B, C) = 6 \]
\[d(A, G) + W(A, F) = 9 \]
\[d(A, A) + W(A, G) = 5 \]

Dijkstra Algorithm

Graph \(G \), weights \(w \), source \(s \)

1. for each \(v \in V[G] \)
 - \(d(v) \leftarrow \infty \)
 - \(P(v) \leftarrow \text{nil} \)
 - \(S \leftarrow \text{empty} \)
2. while \(Q \) is not empty
 - \(u \leftarrow \text{Extract-Min}(Q) \)
 - for each \(v \in \text{Adj}(u) \)
 - if \(d(v) > d(u) + W(u, v) \)
 - then \(d(v) \leftarrow d(u) + W(u, v) \)
 - \(P(v) \leftarrow u \)

Time analysis

- Initialization of priority queue (as a binary heap): \(O(V) \)
- Extract-min is called \(|V| \) times
 - Each Extract-Min takes \(O(\lg V) \) time
 - For each adjacent vertex, update its distance (with Decrease-Key operation: \(O(\lg v) \))

Total running time: \(O((V+E)\lg V) \)

Dijkstra Algorithm

Running time with different \(Q \) implementations

1. Array
 - Extract-Min: \(O(V) \)
 - Decrease-Key: \(O(1) \)
 - Total: \(O(V^2) \)
2. Binary heap
 - Extract-Min: \(O(\lg V) \)
 - Decrease-Key: \(O(\lg V) \)
 - Total: \(O(V\lg V) \)
 - Fibonacci heap
 - Extract-Min: \(O(\lg V) \)
 - Decrease-Key (amortized): \(O(1) \)
 - Total: \(O(V\lg V + E) \)

Floyd algorithm

\(W \) is the weight matrix of graph \(G = (V, E, W) \).

\[w_{ij} = W(v, v_j) \]
\[= 0 \] if \(v_i \notin E \) and \(i \neq j \)
\[= \min(0, W(v_i)) \] if \(v_i \notin E \)

\(D \) with entry \(d_{ij} \) = the shortest-path distance from \(v_i \) to \(v_j \).

Lemma

If a shortest path from \(v_i \) to \(v_j \) goes through an intermediate vertex \(v_k \), then the segments of that path from \(v_i \) to \(v_k \) and from \(v_k \) to \(v_j \) are themselves shortest paths.
Path p is the shortest path from i to j. Path p_{ij}, the portion of path p from i to k, is the shortest path from i to k. Suppose p'_i is the shortest path from i to k, then p_{ij} and p'_{ij} would make a path with shorter distance than path p.

Let k be the highest-indexed intermediate vertex in path p. The highest-indexed intermediate vertex in path p_i must have an index lower than k, that is, all the intermediate vertices of p_i are from subset $[v_1, ..., v_{k-1}]$. The same holds for path p_j.

Let $d^{(0)}_{ij}$ be the weight of a shortest path from i to j with all intermediate vertices in the set $[v_1, ..., v_j]$. We shall have

$$d^{(k)}_{ij} = \min(d^{(k-1)}_{ij}, d^{(k-1)}_{ik} + d^{(k-1)}_{kj}) \quad \text{for} \quad k \geq 1$$

$$d^{(k)}_{ij} = m_{ij} \quad \text{for} \quad k = 0$$

Floyd-APSP(W, D)

1. $D \leftarrow W$
2. for $k \leftarrow 1$ to n
3. for $i \leftarrow 1$ to n
4. for $j \leftarrow 1$ to n
5. $D[i][j] \leftarrow \min(D[i][j], D[i][k] + D[k][j])$
6. return D

Time analysis:
- $O(n^3)$

Transitive closure of a binary relation

- Binary relation on a set S is a subset of $S \times S$. If $(s, s) \in A$, we say s is A-related to s, and use notation sA_s.
- Transitive closure of A is a binary relation, denoted as R, such that, sRa if and only if there is a path from s to s in graph $G=(S, A)$.
- Transitive closure is also called reachability relation. R matrix is an $n \times n$ matrix

$$r_{ij} = 1 \quad \text{if there is a path from } s_i \text{ to } s_j$$

$$= 0 \quad \text{otherwise}$$

Warshall Algorithm

- Define $t^{(0)}_{ij} = 1$ if there exists a path in graph G from vertex i to vertex j with all intermediate vertices in the set $\{1, 2, ..., k\}$, and 0 otherwise.

$$t^{(k)}_{ij} = 1 \quad \text{if } i = j \text{ or } (i, j) \in E$$

$$= 0 \quad \text{if } i \neq j \text{ and } (i, j) \notin E$$

$$t^{(k)}_{ij} = \bigvee (t^{(k-1)}_{ik} \land t^{(k-1)}_{kj})$$

- Running time: $O(n^3)$
Transitive-Closure(G)
1. for i ← 1 to n
2. for j ← 1 to n
3. if i=j or (i,j) ∈ E[G]
4. then t(0)_{ij} ← 1
5. else t(0)_{ij} ← 0
6. for k ← 1 to n
7. for i ← 1 to n
8. for j ← 1 to n
9. t(k)_{ij} ← t(k-1)_{ij} ∨ (t(k-1)_{ik} ∧ t(k-1)_{kj})
10. return T(n)