Definitions

- Spanning tree: given a connected, undirected graph \(G=(V,E) \), a spanning tree is a subgraph of \(G \) that is an undirected tree and contains all the vertices of \(G \).

- Minimum spanning tree (MST): is a spanning tree with minimum weight. The weight of a subgraph is the sum of the weights of the edges in the subgraph.
How to find MST?

- Using depth-first or breadth-first search to traverse the graph will yield a spanning tree, but the found spanning tree is not guaranteed to be a MST.

[Diagram of a graph with nodes U, V, W, and S and edges labeled with weights 1, 1, and 8]

- Need a different scheme to traverse the graph

Optimization problem & Greedy approach

- Pick a starting point randomly
- “grow” step by step, each step is the best among all possible choices
- Stop when a stopping criterion is satisfied

Note: being greedy in a short term may not lead to the overall best solution
Growing a MST

Definitions

- Tree vertices: vertices that are in the tree constructed so far
- Fringe vertices: not in the tree, but adjacent to some tree vertices
- Unseen vertices: all others.
primMST(G, n)
1. Initialize all vertices as unseen
2. Select an arbitrary vertex \(s \) to start the tree, mark \(s \) as tree vertex
3. Mark all vertices adjacent to \(s \) as fringe
4. While there are fringe vertices
5. select an edge of minimum weight between a tree vertex \(t \) and a fringe vertex \(v \)
6. mark \(v \) as tree and add edge \((tv)\) to the tree
7. mark all unseen vertices adjacent to \(v \) as fringe
Definitions

- Minimum spanning tree property: Let T be any spanning tree of a connected, weighted graph G. For any edge uv of G that is not in T, if uv is added to T it creates a cycle and uv is a maximum-weight edge on that cycle, then T has the minimum spanning tree property.

Theorem 8.2
In a connected, weighted graph $G = (V,E,W)$, a spanning tree T is a MST iff T has the MST property.

Proof:
(Only if) A MST T must have the MST property. Otherwise there exists an edge uv not in T, and uv is not the maximum weight edge in the cycle formed by adding uv to T. The maximum weight edge, say xy, is in T. Removing xy creates a new spanning tree T' whose weight is less than T's. This contradicts that T is a MST.

(if) A spanning tree T has the MST property, then T must be a MST. Let T_{min} be any minimum spanning tree of G. If T_{min} and T differ by only one edge; uv is in T but not in T_{min}, xy is in T_{min} but not in T.

If add xy into T, a cycle C is created and uv must be on C. (why?)
Let's call $T + xy = TC$. TC becomes T_{min} if uv is removed, i.e., the cycle C is broken.
Because T has MST property, then $W(uv) \leq W(xy)$.
If add uv into T_{min}, due to similar argument, we must have $W(uv) \geq W(xy)$.
Therefore, $W(uv) = W(xy)$. Since T and T_{min} just differ by edge uv and xy, T and T_{min} must have the same weight. Therefore T is also a minimum spanning tree. By induction, we can prove it is still true when T and T_{min} differs by more edges. (See Lemma 8.1)

Corollary: If all edge weights are distinct, the MST is unique.
Correctness of Prim’s MST algorithm

- Each time an edge from a tree vertex to a fringe vertex is added into the tree, so never is a cycle created.
- All vertices will be covered to the tree eventually.
- Therefore the final tree is a spanning tree.
- It is also a minimum spanning tree, because
 - At each step, the so far constructed tree has the MST property in its induced graph of G.

Proof by induction:
- Let T_k be the tree in k-th step. Let G_k be the subgraph of G induced by T_k (i.e., uv is an edge in G_k if it is an edge in G and both u and v are in T_k)
- T_1 has MST property of G_1.
- Let assume it is true up to arbitrary $k>0$.
- At step $k+1$, vertex v is added, and v has edge with some vertices $u_1, ..., u_d$ in T_k. For definiteness, assume vu_1 is the edge of minimum weight among all possibilities. Now $T_{k+1} = T_k + vu_1$, and $G_{k+1} = G_k + vu_1 + ... + vu_d$.
 - To prove T_{k+1} is MST of G_{k+1}, we need to prove, for any edge xy in G_{k+1} but not in T_{k+1}, if add xy to T_{k+1}, xy will be the maximum weight edge in the cycle thus created.
 - If neither of x and y is v, then xy is in G_k and xy must be the maximum weight edge since T_k has the MST property. If either x or y is v, xy is still the maximum weight edge in the cycle, because no edge on the cycle can have a larger weight due to the way the tree is constructed.
- At step $|V|$, tree $T_{|V|}$ contains all vertices in G, and G itself is the induced graph by $T_{|V|}$. Therefore, Spanning tree $T_{|V|}$ is the MST of G.
It is impossible to have edge rt such that $W(rt) > W(vu)$.

Suppose t is added in later than r, then Prim algorithm will add edge (u_1v) or (uv) instead of (rt), since v is in the fringe and has an edge of smaller weight.

Managing the Fringe with a priority queue

```
primMST(G, r)
1.   for each $u \in Q$
2.      key[u] ← $\infty$
3.      $P[u] \leftarrow \text{nil}$
4.      key[r] ← 0
5.      $Q \leftarrow V[G]$
6.      while $Q$ is not empty
7.         $u \leftarrow \text{Extract-Min}(Q)$
8.         for each $v \in \text{Adj}[u]$
9.             if $v \in Q$ and $w(u,v) < \text{key}[v]$
10.                then $p[v] \leftarrow u$
11.                   key[v] ← $w(u,v)$

Total running time: $O(V \log V + E \log V)$
```

$O(V)$ to build a binary heap

$O(\log(v))$ time to prioritize v in Q

$O(E)$, combined with line 6

$O(\log(v))$ times

$O(V)$ to build a binary heap
Kruskal MST Algorithm

kruskalMST(G, n, F)
1. Initialize F // a forest of trees
2. Build a minimizing priority queue Q of edges of G, prioritized by weight
3. Initialize a union-find structure, sets, in which each vertex of G is in its own set.
4. while Q is not empty
5. vwEdge = Extract-Min(Q)
6. int vSet = find(sets, vwEdge.from)
7. int wSet = find(sets, vwEdge.to)
8. do if (vSet ≠ wSet) // make sure v and w not in the same tree, why?
9. then Add vwEdge to F
10. union(sets, vSet, wSet)
11. return F

NOTE: if there are degeneracy in edge weights, MST will not be unique, depending on how ties are resolved in the priority queue.

Kruskal algorithm: example

![Graph example](image-url)
Kruskal algorithm

Time analysis

- Initialization: $O(V)$
- Deleting all edges from the queue: $\Theta(E \log E)$
- Find called $2|E|$ times, union called $|V|$ times, cost is $O(E \log^*(E))$

Total worst-case time: $\Theta(E \log E)$