
BIOINFORMATICS Vol. 20 no. 14 2004, pages 2159–2161
DOI: 10.1093/bioinformatics/bth217

Editorial

Educating biologists in the 21st century:
bioinformatics scientists versus
bioinformatics technicians
For many years algorithms were taught exclusively to com-
puter scientists, with relatively few students from other
disciplines attending algorithms courses. A biology student in
an algorithms class would be a surprising and unlikely (though
not entirely unwelcome) guest in the 1990s. Things change;
some biology students now take some sort of Algorithms 101.
At the same time, curious computer science students often
take Genetics 101.

Here comes an important question of how to teach bioin-
formatics in the 21st century. Will we teach bioinformatics
to future biology students as a collection of cookbook style
recipes or as a computational science that first explain ideas
and builds on applications afterwards? This is particularly
important at the time when bioinformatics courses may soon
become required for all graduate biology students in the lead-
ing universities. Not to mention that some universities have
already started undergraduate bioinformatics programmes and
the discussions are underway about adding new computational
courses to the standard undergraduate biology curriculum—a
dramatic paradigm shift in biology education.

Since bioinformatics is a computational science, a bioin-
formatics course should strive to present the principles and
ideas that drive an algorithm’s design or explain a crux of a
statistical approach, rather than to be a stamp-collection of the
algorithms and statistical techniques themselves. Many exist-
ing bioinformatics books and courses reduce bioinformatics
to a compendium of computational protocols without even
trying to explain the computational ideas that drove the devel-
opment of bioinformatics in the last 30 years. Other books
(written by computer scientists for computer scientists) try to
explain bioinformatics ideas at the level that is well above the
computational level of most biologists. These books often fail
to connect the computational ideas and applications thus redu-
cing a biologists’ motivation to invest time and effort into such
a book. We feel that focusing on ideas has more intellectual
value and represents a long-term investment: protocols change
quickly, but the computational ideas do not seem to. However,
the question of how to deliver these ideas to biologists remains
an unsolved educational riddle.

Imagine Alice (a computer scientist), Bob (a biologist) and
a chessboard with a lonely king in the lower right corner.
Alice and Bob are bored one Sunday afternoon so they play
the following game. In each turn a player may either move
a king one square to the left, one square up, or one square

‘north-west’ along the diagonal. Slowly but surely, the king
moves towards the upper left corner and the player who places
the king to this square wins the game. Alice moves first.

It is not immediately clear what the winning strategy is,
or even if there is one. Does the first player (or the second)
always have an advantage? Bob tries to analyze the game and
applies a reductionist approach, he first tries to find a strategy
for the simpler game on a 2 × 2 board. He quickly sees that
the second player—himself, in this case—wins in 2 × 2 game
and decides to write the recipe for the ‘winning algorithm’:

If Alice moves the king diagonally, I will move him diagon-
ally and win. If Alice moves the king to the left, I will move
him to the left as well. As a result, Alice’s only choice will
be to move the king up. Afterwards I will move the king up
again and will win the game. The case when Alice moves the
king up is symmetric.

Inspired by this analysis Bob makes a leap of faith: the
second player (i.e. himself) wins in any n×n game. Of course,
every hypothesis must be confirmed by experiment, so Bob
plays a few rounds with Alice. He tries to come up with a
simple recipe for the 3 × 3 game, but there are already a
large number of different game sequences to consider. There
is simply no hope of writing a recipe for the 8 × 8 game since
the number of different strategies Alice can take is enormous.

Meanwhile, Alice does not lose hope of finding a winning
strategy for the 3×3 game. Moreover, she took Algorithms 101
and she understands that recipes written in the cook book style
that Bob uses will not help very much: recipe-style instruc-
tions are not a sufficiently expressive language for describing
algorithms. Instead, she begins by drawing the following table
that is filled by the symbols ↑, ←, ↖ and ∗. The entry in pos-
ition (i, j) (i.e. the i-th row and the j -th column) describes
move that Alice will make in the i × j game. A ← indicates
that she should move the king to the left. A ↑ indicates that she
should move the king up. A ↖ indicates that she should move
the king diagonally, and ∗ indicates that she should not bother
playing the game because she will definitely lose against an
opponent who has a clue.

0 1 2 3 4 5 6 7 8
0 ← ∗ ← ∗ ← ∗ ← ∗
1 ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑
2 ∗ ← ∗ ← ∗ ← ∗ ← ∗
3 ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑
4 ∗ ← ∗ ← ∗ ← ∗ ← ∗
5 ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑
6 ∗ ← ∗ ← ∗ ← ∗ ← ∗
7 ↑ ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑
8 ∗ ← ∗ ← ∗ ← ∗ ← ∗

Bioinformatics 20(14) © Oxford University Press 2004; all rights reserved. 2159



Editorial

For example, if she is faced with the 3 × 3 game, she finds
a ↖ in the third row and third column, indicating that she
should move the king diagonally. This makes Bob take the first
move in a 2 × 2 game, which is marked with a ∗. No matter
what he does, Alice wins using instructions in the above table.

Impressed by the table, Bob learns how to use it to win the
8 × 8 game. However, Bob does not know how to construct
a similar table for the 20 × 20 game. The problem is not that
Bob is stupid, but that he has not studied algorithms. Even if
Bob figured out the logic behind 20×20 game, a more general
20 × 20 × 20 game on a three-dimensional chessboard would
turn into an impossible conundrum for him since he never
took Algorithms 101.

There are two things Bob could do to remedy this situation.
First, he could take a class in algorithms to learn how to solve
puzzle-like combinatorial problems. Second, he could mem-
orize a suitably large table that Alice gives him and use that
to play the game. Leading questions notwithstanding, what
would you do as a biologist?

Of course, the answer we expect to hear from most rational
people is ‘Why in the world do I care about a chess game
with a lonely king and two nerdy people? I’m interested in
biology, and this game has nothing to do with me’. This is
not actually true: the chess game is in fact the ubiquitous
sequence alignment problem in disguise. Although it is not
immediately clear what DNA sequence alignment and our
chess game have in common, the computational idea used
to solve both problems is the same. The fact that Bob was
not able to find the strategy for the game indicates that he
does not understand how alignment algorithms work either.
He might disagree if he uses alignment algorithms or BLAST
on a daily basis, but we argue that since he failed to come
up with a strategy for 8 × 8 game, he will also fail when
confronted with a new flavor of an alignment problem or a
particularly complex similarity analysis. More troubling to
Bob, he may find it difficult to compete with the scads of new
biologists and computer scientists who think algorithmically
about biological problems1.

Many biologists are comfortable using algorithms like
BLAST or GenScan without really understanding how the
underlying algorithm works. This is not substantially differ-
ent from a diligent robot following Alice’s table, but it does
have an important consequence. BLAST solves a particu-
lar problem only approximately and it has certain systematic
weaknesses (we are not picking on BLAST here). Users that
do not know how BLAST works might misapply the algorithm
or misinterpret the results it returns2. Biologists sometimes
use bioinformatics tools simply as computational protocols in

1Particularly, if he still did not figure out how to use the symmetry in this
game thus eliminating the need to memorize Alice’s table.
2Many examples of erroneous biological conclusions derived from misin-
terpretations of BLAST results are described in the paper by L.M. Iyer,
L. Aravind, P. Bork, K. Hofmann, A.R. Mushegian, I.B. Zhulin and

quite the same way that an uninformed mathematician might
use experimental protocols without any background in bio-
chemistry or molecular biology. In either case, important
observations might be missed or incorrect conclusions drawn.
Besides, intellectually interesting work can quickly become
mere drudgery if one does not really understand it.

Many recent bioinformatics books cater to a protocol-
centric pragmatic approach to bioinformatics. They focus
on parameter settings, application-specific features and other
details without revealing the computational ideas behind the
algorithms. This trend often follows the tradition of bio-
logy books to present material as a collection of facts and
discoveries. In contrast, introductory books in algorithms
and mathematics usually focus on ideas rather than on the
details of computational recipes. In principle, one can ima-
gine a calculus book teaching physicists and engineers how to
take integrals without any attempt to explain what is integral.
Although such a book is not that difficult to write, physi-
cists and engineers somehow escaped this curse, probably
because they understand that the recipe-based approach to
science is doomed to fail. Biologists are less lucky and many
biology departments now offer recipe-based bioinformatics
courses without sending their students first to Algorithms 101
and Statistics 101. Some of students who take these classes
get excited about bioinformatics and even call themselves
bioinformaticians and try to pursue a research career in bioin-
formatics. Many of them do not understand that, with a few
exceptions, such courses prepare bioinformatics technicians
rather than bioinformatics scientists.

Bioinformatics is often defined as ‘applications of com-
puters in biology’. In recent decades, biology has raised
fascinating mathematical problems and reducing bioinform-
atics to ‘applications of computers in biology’ diminishes
the rich intellectual content of bioinformatics. Bioinformatics
has become a part of modern biology and often dictates new
fashions, enables new approaches and drives further biolo-
gical developments. Simply using bioinformatics as a toolkit
without understanding of the main computational ideas is not
very different than using a PCR kit without knowing how PCR
works.

Bioinformatics has affected more than just biology—it has
also had a profound impact on the computational sciences.
Biology has rapidly become a large source for new algorithmic
and statistical problems, and has arguably been the target for
more algorithms than any of the other fundamental sciences.
This link between computer science and biology has import-
ant educational implications that change the way we teach
computational ideas to biologists, as well as how applied
algorithms are taught to computer scientists.

E.V. Koonin. Quoderat demonstrandum? The mystery of experimental valid-
ation of apparently erroneous computational analyses of protein sequences.
Genome Biol., 2001, 2(12): RESEARCH0051.

2160



Editorial

Although modern biologists deal with algorithms on a daily
basis, the language they use to describe an algorithm is very
different: it is closer to the language used in a cookbook.
Accordingly, some bioinformatics books are written in this
familiar lingo as an effort to make biologists feel at home
with different bioinformatics concepts. Some of such books
often look like collections of somewhat involved pumpkin pie
recipes that lack logic, clarity and algorithmic culture. Unfor-
tunately, attempts to present bioinformatics in the cookbook
fashion are hindered by the fact that natural languages are not
suitable for communicating algorithmic ideas more complex
than the simplistic pumpkin pie recipe. Furthermore, we are
skeptical that cookbook-style languages have any future in
bioinformatics, and are afraid that biologists who are serious
about bioinformatics have no choice but to learn the language
of algorithms.

Needless to say, presenting computational ideas to biolo-
gists (who typically have limited computational background)
is a difficult educational challenge. In fact, the difficulty of this
task is one of the reasons why some biology departments have
chosen the minimal resistance path of teaching the recipe-
style bioinformatics. We argue that the only way to address
this challenge is to introduce an additional required course

Algorithms + Statistics 101 in the undergraduate molecular
biology curriculum. We envision it as a problem-driven course
with all examples and problems being biology-motivated.
Computational curriculum of biologists is often limited to an
equivalent of two quarters of Calculus 101. This tradition
remained unchanged in the last 30 years and was not affected
by the recent computational revolution in biology. Introdu-
cing this new course will modernize the biology curriculum
and will introduce students to computational ideas in molecu-
lar biology3. Modern bioinformatics is a blend of algorithms
and statistics (BLAST and GenScan are good examples) and
it is important that this Algorithms and Statistics in Biology
course is not reduced to Algorithms 101 or Statistics 101.
And, god forbid, it should not be reduced to Stamp-collection
of bioinformatics tools 101 as it is often done today.

Pavel A. Pevzner
Department of Computer Science and Engineering

University of California at San Diego
La Jolla, CA 92093, USA

Advance Access publication April 8, 2004

3We are not picking on Calculus here but simply state that today algorithms and statistics play a somehow larger role in the everyday work of molecular

biologists. The existing Biostatistics 101 courses, on the other hand, typically have no overlap with modern bioinformatics.

2161


