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Invertible Subset LDPC Code
For PAPR Reduction In OFDM Systems

With Low Complexity
Daiming Qu, Li Li and Tao Jiang

Abstract—In this paper, we introduce a new family of low-
density parity-check (LDPC) codes, called as invertible subset
LDPC (IS-LDPC) code, for peak-to-average power ratio (PAPR)
reduction in OFDM systems with low complexity. An IS-LDPC
code has a number of disjoint invertible subsets, and each
invertible subset can be independently inverted to generate other
valid codewords of the LDPC code. To construct IS-LDPC codes
with good error-correcting performance, we propose a modified
progressive edge-growth construction algorithm and verify its
effectiveness by analyzing the constructed Tanner graphs. Both
theoretical analysis and numerical results show that the IS-
LDPC codes exhibit excellent error-correcting performance and
the proposed PAPR reduction scheme based on IS-LDPC codes
significantly reduces the PAPR. Compared with the existing
coding-based candidate generation schemes, the proposed scheme
has a much lower searching complexity when the codeword is
transmitted by multiple OFDM symbols. With all mentioned
advantages, the proposed PAPR reduction scheme based on IS-
LDPC codes could serve as an attractive PAPR reduction solution
for future multicarrier communication systems.

Index Terms—Orthogonal frequency-division multiplexing
(OFDM), peak-to-average power ratio (PAPR), low density
parity-check codes (LDPC), progressive edge-growth (PEG).

I. INTRODUCTION

Orthogonal frequency-division multiplexing (OFDM) has
been widely adopted in various wireless communication stan-
dards, due to its capability to efficiently cope with frequency
selective channels. However, one major drawback of OFDM
systems is high peak-to-average power ratio (PAPR). High
PAPR significantly complicates implementation of the radio
frequency front-end, since power amplifiers with a wide linear
range are required. Otherwise, the nonlinear characteristics of
power amplifiers would distort the in-band signal and raise the
out-of-band radiation. To reduce PAPR, many schemes have
been proposed in the literature [1], [2], among which coding-
based approaches have attracted considerable attentions due
to their inherent error control capability and the simplicity
of implementation. Particularly, coding-based approaches are
classified into two categories in this paper: low PAPR coding
and coding-based candidate generation schemes.

The low PAPR coding: it generates low PAPR codewords
through coding. The low PAPR code was firstly proposed
in [3]. In [4], the existence of asymptotically good codes
with low PAPR was proven. In [5], efficient computation of
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the PAPR for any practical code was discussed. The Golay
complementary sequences and Reed-Muller (RM) codes to
achieve excellent PAPR performance were proposed in [6]
and [7]. Later, a complement block-coding (CBC) scheme
was proposed to reduce the PAPR in [8]. However, the error-
correcting performance of these codes are quite far from
the Shannon limit. In [9] and [10], time-frequency turbo
block codes (TBC) were proposed to achieve good error-
correcting performance as well as low PAPR, in which the
frequency domain component code employs codes with low
PAPR, like RM code or dual Bose-Ray-Chaudhuri code, and
the time domain component code uses low density parity-
check (LDPC) code. However, there are still apparent error-
correcting performance gaps between the TBC codes and the
capacity achieving codes.

The coding-based candidate generation schemes: it gen-
erates candidate codewords for any given codeword and a
candidate with low PAPR is selected for transmission. In
[17], candidates are generated by employing a scrambler
before channel coding, therefore all candidates are also valid
codewords. In [18], candidate codewords are generated with
a number of interleavers before channel coding. Employment
of random-like codes, such as turbo and LDPC code, were
proposed in [19] and [20] to generate candidate codewords,
which do not require an explicit scrambler/interleaver. More-
over, binary cyclic codes, Reed-Muller codes, Reed Solomon
and simplex codes are considered in [21]–[23]. At first sight,
the coding-based candidate generation schemes share the same
principle of PAPR reduction with the selective mapping (SLM)
[24] or partial transmit sequence (PTS) [25] schemes, which
generate candidate signals and select a candidate of low PAPR
for transmission. However, the major difference is that the
candidates of the coding-based candidate generation schemes
are valid codewords, while those of the SLM and PTS schemes
are not necessarily valid codewords. Unlike the SLM and
PTS schemes, the coding-based candidate generation schemes
refrains from the use of explicit side information in the
receiver, with the help of coding [17].

Compared with the low PAPR coding schemes, the coding-
based candidate generation schemes do not suffer significant
degradation of error-correcting performance, by employing
error-correcting codes with proven performance [17]. There-
fore, we focus on the coding-based candidate generation
schemes in this paper. However, the existing coding-based
candidate generation schemes do not support large number
of candidates, due to the high complexity of searching the
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candidate with the lowest PAPR. Therefore, their PAPR reduc-
tion performance is limited, especially when one codeword is
transmitted by multiple OFDM symbols, which will be further
discussed in Section II.

In this paper, we first propose a code structure that enables
each OFDM symbol to be independently treated for PAPR
reduction, therefore the searching complexity is significantly
reduced. Then, we propose a new family of LDPC codes,
called as invertible subset LDPC (IS-LDPC) code, which
complies with the proposed code structure. An IS-LDPC code
has a number of disjoint invertible subsets, and each invertible
subset can be independently inverted to generate candidates
that are valid codewords of the LDPC code. To construct
IS-LDPC codes with good error-correcting performance, we
propose a modified progressive edge-growth construction al-
gorithm, and verify its effectiveness by analyzing the girth
and approximate cycle extrinsic message degree (ACE) [35]
of the constructed Tanner graphs. Besides the excellent error-
correcting performance and significant PAPR reduction, the
proposed scheme supports multiple-OFDM-symbol frames
very well, by dramatically reducing the searching complexity.

The remainder of this paper is organized as follows. In
Section II, the proposed code structure for coding-based can-
didate generation schemes with low searching complexity is
described. In Section III, we define the IS-LDPC codes and
present several properties of the codes. The modified PEG
construction algorithm are presented in Section IV. Then,
we analyze the girth and ACE properties of the constructed
IS-LDPC codes in Section V. PAPR reduction with the IS-
LDPC codes is proposed in Section VI. Simulation results are
presented in Section VII, followed by conclusions and future
works in Section VIII.

Notations: Bold fonts are used to denote vectors; [·]T repre-
sents the transpose of a matrix; ⊕ denotes modulo 2 addition;
a represents the negation of binary variable a, A represents
the negation of all bits of binary vector A.

II. PROPOSED CODE STRUCTURE WITH LOW SEARCHING
COMPLEXITY

A. An example of coding-based candidate generation schemes

We briefly recall the PAPR reduction scheme proposed in
[17] as a typical example of coding-based candidate generation
schemes. At the transmitter of [17], U binary labels drive a
scrambler to generate a scrambled output of the information
bits, and the labels are inserted as a prefix. Then, the output
is coded by an error control encoder and the coded bits
are mapped onto OFDM subcarriers. The PAPR is reduced
by choosing the proper labels. At the receiver, the labels
can be easily recovered by decoding. One advantage of the
coding-based candidate generation schemes is that they do
not suffer significant degradation of error-correcting perfor-
mance. Another advantage is that, the side information, which
is called as label bits in [17], is embedded in codewords
for transmission other than transmitted by an extra control
channel. As a comparison, the side information of the SLM
and PTS schemes is either transmitted by an extra control
channel, or detected based on certain signal properties of the

schemes [26]–[29], which incurs significant cost of overhead
or computational complexity.

The major problem of the existing coding-based candidate
generation schemes is the high complexity of searching the
candidates with the lowest PAPR. For example, the scheme
in [17] requires to search among 2U different candidates to
minimize the PAPR, which means a searching complexity of
2U . This searching complexity is prohibitively high when U
is large.

B. Multiple-OFDM-symbol frames

Most of the existing coding-based candidate generation
schemes assume that a codeword is transmitted by a single
OFDM symbol. However, a codeword is usually transmitted
by multiple OFDM symbols in practical OFDM systems such
as the well known IEEE 802.11a standard for Wireless Local
Area Networks (WLAN) [34]. We call the multiple OFDM
symbols, by which a single codeword is transmitted, as a
multiple-OFDM-symbol frame in this paper.

Apparently, a coding-based candidate generation scheme
should be able to effectively reduce the PAPRs of all OFDM
symbols in a multiple-OFDM-symbol frame. Thus, U has
to be much larger for a multiple-OFDM-symbol frame than
that for a single OFDM symbol. Consequently, the searching
complexity becomes a more severe issue when multiple-
OFDM-symbol frame is considered.

C. Proposed code structure with low searching complexity

To lower the searching complexity for multiple-OFDM-
symbol frames, we show in the followings how code structure
affects the searching complexity, and propose a code structure
with low searching complexity.

With coding-based candidate generation schemes, a new
codeword is generated for a given codeword, when a label
bit is flipped. The new codeword differs from the original one
in a number of coded bits, which are marked with ‘F’ in Fig.
1. For the scheme in [17], the followings are observed: (1) the
positions of the flipped coded bits depends on the information
bits and other label bits; (2) the flipped coded bits are spread
over multiple OFDM symbols, as shown in the upper part of
Fig. 1. With this code structure, the PAPR of each OFDM
symbol can not be independently treated, therefore searching
among the entire set of candidate codewords is necessary,
which means 2U searching complexity.

To remedy the problem described above, we propose a code
structure that enables low searching complexity for coding-
based candidate generation schemes. The proposed code struc-
ture has the following properties: (1) for any given label bit,
the positions of the flipped coded bits resulted from flipping
the label bit are fixed, i.e., the positions do not depend on
the information bits or other label bits; (2) there exists an
assignment of coded bits to OFDM symbols, such that for
each label bit, all flipped coded bits resulted from flipping the
label bit are assigned to the same OFDM symbol, as illustrated
in the lower part of Fig. 1. With the proposed code structure
and proper bit assignment, the candidate codeword generated
by flipping any given label bit differs from the original one
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Fig. 1. The proposed code structure for coding-based candidate generation
schemes with low searching complexity.

in only one OFDM symbol. In this case, the PAPR of each
OFDM symbol can be independently treated by only varying
its associated label bits. Therefore, instead of searching among
the entire set of candidate codewords, only searching among a
subset of candidate codewords is required, whose size is much
smaller than 2U . Specifically, consider the case that the frame
consists of K OFDM symbols and each OFDM symbol is
associated with U/K label bits, the searching complexity for
each OFDM symbol is 2U/K and total searching complexity
for a codeword is reduced from 2U to K2U/K . The searching
complexity reduction will be further discussed with examples
in Section VI-C and VII-B. This complexity reduction is very
huge when K is large, for multiple-OFDM-symbol frames.

To construct a code having good error-correcting perfor-
mance and complying the proposed code structure, LDPC code
is a good choice, due to the fact that LDPC code is among
the best error-correcting codes known to date and rules of the
proposed code structure could be applied in the constructions
of LDPC codes. This idea leads to the proposed invertible
subset LDPC code in the following section.

III. PROPOSED IS-LDPC CODE

A. Definition of IS-LDPC code

Definition 1 (Invertible Subset): Let vector A =
[a1, a2, · · · , aN ] denote a codeword of binary linear
block code A, and subset S = {i1, i2, · · · , iL} denote a
subset of indexes of the coded bits, i.e., {i1, i2, · · · , iL}
⊆ {1, 2, · · · , N}. Subset S is an invertible subset if, for any
valid codeword A of A, codeword Ã = [ã1, ã2, · · · , ãN ] is a
valid codeword of A, where

ãi =

{
ai, i ∈ S
ai, otherwise . (1)

An example block code of two disjoint invertible subsets
is shown in Fig. 2, which has six coded bits and 16 valid

1 0 1 0 1 0

1 0 1 1 0 1

1 0 0 0 0 1

1 0 0 1 1 0

1 1 1 0 0 0

1 1 1 1 1 1

1 1 0 0 1 1

1 1 0 1 0 0

0 0 1 0 1 1

0 0 1 1 0 0

0 0 0 0 0 0

0 0 0 1 1 1

0 1 1 0 0 1

0 1 1 1 1 0

0 1 0 0 1 0

0 1 0 1 0 1

0 0 0 0 0 0

0 0 0 1 1 1

0 0 1 0 1 1

0 0 1 1 0 0

0 1 0 0 1 0

0 1 0 1 0 1

0 1 1 0 0 1

0 1 1 1 1 0

1 0 0 0 0 1

1 0 0 1 1 0

1 0 1 0 1 0

1 0 1 1 0 1

1 1 0 0 1 1

1 1 0 1 0 0

1 1 1 0 0 0

1 1 1 1 1 1

0 1 0 1 0 1

0 1 0 0 1 0

0 1 1 1 1 0

0 1 1 0 0 1

0 0 0 1 1 1

0 0 0 0 0 0

0 0 1 1 0 0

0 0 1 0 1 1

1 1 0 1 0 0

1 1 0 0 1 1

1 1 1 1 1 1

1 1 1 0 0 0

1 0 0 1 1 0

1 0 0 0 0 1

1 0 1 1 0 1

1 0 1 0 1 0

1 1 1 1 1 1

1 1 1 0 0 0

1 1 0 1 0 0

1 1 0 0 1 1

1 0 1 1 0 1

1 0 1 0 1 0

1 0 0 1 1 0

1 0 0 0 0 1

0 1 1 1 1 0

0 1 1 0 0 1

0 1 0 1 0 1

0 1 0 0 1 0

0 0 1 1 0 0

0 0 1 0 1 1

0 0 0 1 1 1

0 0 0 0 0 0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

1

0

1

0

0

1

0

1

1

0

1

0

0

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

1

0

0

1

1

0

0

1

Coded bits of

invertible subset 1

Coded bits of

invertible subset 2

Invert

subset 1

Invert

subset 2

Invert

subset 1 & 2

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

0

0

1

0

1

1

0

1

0

0

1

0

1

1

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

1

0

0

1

1

0

0

1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

1

0

1

0

0

1

0

1

1

0

1

0

0

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

0

1

1

0

0

1

1

0

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

0

0

1

0

1

1

0

1

0

0

1

0

1

1

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0

1

1

0

0

1

0

1

1

0

0

1

1

0

Original

Codewords

a1a2a3a4a5a6 a1a2a3a4a5a6 a1a2a3a4a5a6 a1a2a3a4a5a6

Fig. 2. An example block code with two disjoint invertible subsets.

codewords. All valid codewords of the block code are pre-
sented in the leftmost block. It is observed that, for any given
codeword, the codewords generated by only inverting subset
1, only inverting subset 2, and inverting both subsets, are valid
codewords of the block code.

A binary LDPC code is defined by a sparse parity-check
matrix H having dimension M × N or its equivalent Tanner
graph [11]–[16]. Let (V, C, E) denote the Tanner graph of the
LDPC code, where V = {v1, v2, · · · , vN} is the variable-node
set, C = {c1, c2, · · · , cM} is the check-node set, and E is the
set of edges (E ⊆ V × C), with edge (vj , ci) ∈ E if and only
if hi,j ̸= 0, where hi,j denotes the entry of H at the ith row
(1 ≤ i ≤M ) and the jth column (1 ≤ j ≤ N ). In this paper,
we consider irregular LDPC codes with variable node and
check node degree distributions defined by the polynomials
as follows,

λ(x) =

dvmax∑
i=2

λix
i−1, and ρ(x) =

dcmax∑
i=2

ρix
i−1, (2)

where dvmax and dcmax are the maximum variable and check
node degree of the code, respectively. λi and ρi represent the
fraction of edges emanating from degree i variable and check
nodes, respectively.

Definition 2 (IS-LDPC codes of inversion freedom U ): An
invertible subset LDPC (IS-LDPC) code of inversion freedom
U is an LDPC code with U invertible subset, and there is no
intersection among different invertible subsets.

According to the above definitions, if an IS-LDPC code
has multiple disjoint invertible subsets, these subsets can be
inverted independently, and all generated codewords are valid
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codewords.
Actually, all LDPC codes have inversion freedoms no less

than one, since it is easy to find at least one invertible subset
for any LDPC codes by the following way: given any non-zero
LDPC codeword, the set of the indexes of the non-zero coded
bits forms an invertible subset of the LDPC code. However,
the challenge is that, for practical use of IS-LDPC codes in
communication systems, the following requirements have to be
satisfied: (1) the inversion freedom is greater than the number
of OFDM symbols in a frame, and greater inversion freedom
is required for lower PAPR; (2) the number of coded bits for
each invertible subset can be specified by the systems; (3)
the indexes of coded bits for each invertible subsets can be
specified by the systems, i.e., {i1, i2, · · · , iL} can be specified
for invertible subset S.

It will be shown in Section VI-C that, IS-LDPC codes
satisfying the above requirements could comply with the code
structure proposed in Section II-C.

B. Properties of IS-LDPC parity-check matrices and Tanner
graphs

Let SIS denote an invertible subset, and vector AIS denote
the corresponding coded bits. Let SOT denote the subset
of the coded bits that do not belong to SIS, and vector
AOT denote the corresponding coded bits. Note that, other
invertible subsets could be included in SOT. The coded bits are
reordered such that the codeword A = [AIS,AOT]. Similarly,
the variable-node set V is partitioned into two subsets VIS
and VOT, where VIS and VOT corresponds to SIS and SOT,
respectively. As a Tanner graph defines a parity-check matrix,
the parity-check matrix H also consists of two submatrices,
i.e., H = [HIS,HOT], where HIS and HOT are submatrices
of H, and the columns of HIS and HOT correspond to the
variable nodes in subset VIS and VOT, respectively.

Theorem 1: A necessary and sufficient condition for SIS
to be an invertible subset of the LDPC code is that, each row
of HIS has even Hamming weight, i.e., HIS[1, 1, · · · , 1]T = 0
over GF(2).

Proof: Let SS denote a subset and SS ⊆ {1, 2, · · · , N},
vector AS denote its corresponding coded bits and matrix HS
denotes its corresponding submatrix of H. We can write over
GF(2), for any SS,

HS[AS]
T + HS[AS]

T

= HS[AS + AS]
T

= HS[1, 1, . . . , 1]
T. (3)

(1) Proof of the necessary condition.
Let Ã = [AIS,AOT], then we have

H[Ã]T + H[A]T

= HIS[AIS]
T + HOT[AOT]

T + HIS[AIS]
T + HOT[AOT]

T

= HIS[AIS]
T + HIS[AIS]

T

= HIS[1, 1, . . . , 1]
T. (4)

Note that, if SIS is an invertible subset, and Ã is generated
from A by inverting AIS, Ã is a valid codeword of the LDPC
code. Then, H[Ã]T = H[A]T = 0, and

H[Ã]T + H[A]T = 0. (5)

Therefore,
HIS[1, 1, . . . , 1]

T = 0. (6)

In another words, HIS is a matrix of even Hamming weight
per row.

(2) Proof of the sufficient condition.
Since each row of HIS has even Hamming weight,

HIS[1, 1, · · · , 1]T = 0. (7)

According to (3), we have HIS[AIS]
T + HIS[AIS]

T =
HIS[1, 1, · · · , 1]T = 0, i.e.,

HIS[AIS]
T = HIS[AIS]

T. (8)

Then, we have

H[Ã]T = HIS[AIS]
T + HOT[AOT]

T

= HIS[AIS]
T + HOT[AOT]

T

= H[A]T

= 0. (9)

The above equality means that Ã is a valid codeword under the
parity-check matrix H. Therefore, SIS is an invertible subset.

Examining the theorem in terms of Tanner graph, the
following remarks is reached.

Remark 1: A necessary and sufficient condition for SIS
to be an invertible subset of the LDPC code is that, for any
check node, the total number of edges connecting the check
node to all variable nodes in VIS is even.

Remark 2: It is inferred from Remark 1 that if SIS is an
invertible subset, the total number of edges emanating from
VIS is even.

Since disjoint invertible subsets of an IS-LDPC code can be
inverted independently, Theorem 1 can be straightforwardly
generalized to multiple invertible subsets:

Remark 3: A necessary and sufficient condition for U dis-
joint subsets of coded bits to be invertible subsets of the LDPC
code is that, for any pair of the check node and subset, the total
number of edges connecting the check node and all variable
nodes of the subset is even.

IV. CONSTRUCTION OF IS-LDPC CODES

This section discusses the construction of IS-LDPC codes
with disjoint invertible subsets that are specified in advance.

It has been proven that the PEG algorithm [13] is a powerful
algorithm to construct LDPC codes. The PEG algorithm builds
up a Tanner graph in an edge-by-edge manner, in which the
local girth of a variable node is maximized whenever a new
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edge is grown for it. Particularly, when growing a new edge for
variable node vj , the PEG algorithm expands a tree subgraph
from vj up to depth l so that the cardinality of N l

vj
stops

increasing but is less than M , or N l

vj ̸= Ø but N l+1

vj
=

Ø (N l
vj and N l

vj
denote the set of check nodes reached by

the expansion from variable node vj up to depth l, and its
complement, respectively), then a check node in the set N l

vj

with the minimum current check-node degree is chosen to be
connected to vj . For details of the PEG algorithm, please refer
to [13].

Algorithm 1 IS-PEG algorithm
for j = 1 to N do

for k = 1 to dvj , where dvj represents the degree of
variable node vj , do

if k = 1 then
Update O, P and Q.
if vj ∈ VIS and P < Q then
E1vj
← edge (vj , c), where c is a check node such

that it has the lowest check-node degree under the
current graph setting E = Ev1 ∪ · · · ∪ Evj−1 ,

else
E1vj
← edge (vj , c), where c is a check node from

O such that it has the lowest check-node degree
under the current graph setting E = Ev1 ∪ · · · ∪
Evj−1

,
end if, where Evi contains all edges grown for vi,
i.e., Evi

= E1vi ∪ E
2
vi ∪ · · · , and Emvi

is the mth edge
grown for vi.

else
Update O, P and Q.
Expand a tree subgraph from variable node vj up
to depth l under the current graph setting E =
Ev1 ∪ · · · ∪ Evj , such that the cardinality of N l

vj

stops increasing but is less than M , or N l

vj ̸= Ø but

N l+1

vj
= Ø. Then, the set of check-node candidates

N is
if vj ∈ VIS and P < Q then
N = N l

vj
,

else
N = N l

vj
∩ O.

end if
Ekvj ← edge (vj , c), where c is a check node in N ,
which has the lowest check-node degree.

end if
end for

end for

In this subsection, we propose a modified PEG algorithm,
which is called as IS-PEG algorithm, to construct IS-LDPC
codes. The IS-PEG algorithm is based on Theorem 1 and
the Remarks in Section III, i.e., it ensures that, for any pair
of check node and invertible subset, the total number of
edges connecting the check node to all variable nodes of
the invertible subset is even. For simplicity of presentation,
we consider in the followings the construction of an IS-

LDPC code with U = 1, i.e., only one invertible subset is
specified for the code. The extension to multiple invertible
subsets is straightforward: as indicated by Remark 3, the
invertible subsets independently satisfy Theorem 1, therefore
the proposed algorithm could be performed alternately and
independently on these subsets.

The key idea of the IS-PEG algorithm is that: (1) the earlier
edges grown for VIS (the variable node set of the invertible
subset) are grown following the same rule as that of the PEG
algorithm; (2) the later edges grown for VIS are forced to
connect to the check nodes that are connected to VIS odd times.

The IS-PEG algorithm presented in Algorithm 1 is ex-
plained briefly as follows. When a new edge is to be grown
for the variable node vj ∈ VIS, let O denote the current set
of check nodes that are connected to VIS odd times, P denote
the number of check nodes in O, Q denote the total number
of edges remained to be grown for all variable nodes in VIS,
and N denote the set of check-node candidates for this edge.
If P < Q, let N = N l

vj
, otherwise, let N be the intersection

of O and N l

vj , i.e.,

N =

{
N l

vj
, P < Q

N l

vj
∩ O, otherwise

, (10)

where N l

vj
is the complement of the set of check nodes

reached by the tree expansion from variable node vj up to
depth l. Eq. (10) means that the edge is grown exactly the
same way as it is in the original PEG algorithm when P < Q;
otherwise, the edge is forced to connect to the check nodes
that are connected to VIS odd times, which decreases P by
one. Iteratively performing the forced connecting eventually
leads to P = Q = 0, which means that every check node is
connected to VIS even times.

Before running the IS-PEG algorithm, we should make sure
that the total number of edges to be grown for VIS is even, due
to Remark 2. If this is not satisfied, we could simply decrease
by one the degree of one variable node with the highest degree
in VIS, which would only lead to a slightly different variable-
node degree distribution compared with the original one. When
running the IS-PEG algorithm, one situation may happen: there
is no check node in the intersection of the two sets, i.e., N l

vj ∩
O = Ø. In this case, check nodes are selected in N l−1

vj
∩ O

instead.
Similar to the PEG algorithm for systematic LDPC codes,

all variable nodes are sorted in nondecreasing order with
respect to their degrees, i.e, dv1 ≤ dv2 ≤ · · · ≤ dvN , and
vN−M+1 to vN correspond to the information bits, where dvj
represents the degree of variable node vj .

V. GIRTH AND ACE ANALYSIS OF THE CONSTRUCTED
IS-LDPC TANNER GRAPH

With the forced connecting described in Algorithm 1, it is
clear that short cycles of length four can not be avoided in
the Tanner graph. In this section, we consider the effects of
these four-cycles by analyzing the girth [13] and approximate
cycle extrinsic message degree (ACE) [35], [38] of the Tanner
graphs.
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Fig. 3. Girth of the left-hand subgraphs of variable node vj for the PEG
and IS-PEG Tanner graph, with N = 1024, R = 1/2, dvmax = 15, U = 4.
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Fig. 4. Girth of the left-hand subgraphs of variable node vj for the PEG and
IS-PEG Tanner graph, with N = 1024, R = 1/2, dvmax = 15, U = 64.

In the following examples, IS-LDPC codes of length N =
1024 and rate R = 1/2 are constructed. The IS-LDPC codes
and the LDPC code constructed by the PEG algorithm employ
the same degree distribution pair, which is optimized by the
density evolution technique [12], with maximum variable node
degree dvmax = 15. The variable-node set V is partitioned into
U disjoint variable-node subsets, denoted as V1,V2, · · · ,VU ,
where Vu corresponds to the invertible subset Su. Uniformly
interleaved partition is adopted for the subsets, i.e., Su =
{u, u+ U, · · · , N − U + u}, for u = 1, 2, · · · , U .

A. Girth of the left-hand subgraph

Girth of the left-hand subgraph is a powerful tool to
investigate the properties of cycles, and it gives an insight
on the error performance of a constructed LDPC code [13].
The left-hand subgraph of variable node vj consists of the
variable nodes v1, v2, ..., vj , 1 ≤ j ≤ N , the edges that
emanate from them, and the check nodes they are connected

to. It is desirable, in particular for irregular LDPC codes, that
the girth of the left-hand subgraph of vj decreases slowly as
a function of j, so that the possibility that lower degree nodes
together form a small cycle decreases [13]. The PEG algorithm
is actually an algorithm that tries to maximize the girth of the
left-hand subgraph. Fig. 3 depicts the girth of the left-hand
subgraph of variable node vj as a function of j for Tanner
graphs constructed by the PEG and IS-PEG algorithm (U = 4
for IS-PEG). To show details of the variation, we present the
result for 650 ≤ j ≤ 1024 in Fig. 3. The girth of the left-hand
subgraph for all variable nodes is embedded in the figure.
Similarly, the result for U = 64 are presented in Fig. 4. From
these figures, the followings are observed.

• The curves of IS-PEG algorithm and those of PEG
algorithm decrease slowly as a function of j. Thus, the IS-
PEG construction also possesses the desired property that,
the possibility that lower degree variable nodes together
form a short cycle decreases.

• Although four-cycles are formed in the IS-PEG Tanner
graph, all these short cycles include high-degree variable
nodes. The reason is that the forced connecting in the
IS-PEG algorithm only happens for high-degree variable
nodes.

• The curve of the IS-PEG algorithm decreases more
quickly for larger U .

B. ACE Metric

It is well known that not all short cycles are equally
harmful, and the connectivity of a short cycle with the rest of
the graph should also be taken into account. Tian et al. [35]
proposed the ACE metric to measure the level of connectivity
of a cycle with the rest of the graph. Then, the ACE metric
is widely adopted in LDPC code construction [35]–[38]. In
addition, the ACE metric is also used as an efficient tool to
evaluate the performance of finite-length LDPC codes [38].
The ACE of a cycle is defined as the following [35].

Definition 3 (ACE): The ACE of a length 2l cycle is∑
k(dv(k) − 2), where v(k) represents the kth variable node

in this cycle and dv(k) denotes its degree.

The ACE metric of variable node v, is defined as the
minimum ACE of all cycles that involve v and are shorter
than a given length [35]. In this paper, we use the ACE metric
of cycles shorter than eight to evaluate the IS-PEG algorithm.

In the simulation of Fig. 5, we calculate the ACE metric for
all variable nodes and present the distribution of ACE metric
by a histogram, for the codes constructed by the PEG and IS-
PEG algorithms. The followings are observed from the figure.

• The minimum ACE metric is 13 for the PEG algorithm,
and it decreases to 12 for the IS-PEG algorithm, which
is a slight degradation.

• The number of variable nodes having ACE metric of 12
increases with U .

• The ACE metrics of the IS-PEG algorithm are mainly
distributed between 13 and 17 as those of the PEG
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algorithm, even for U = 64.

Based on the above analysis, we anticipate that the error-
correcting performance of the example IS-LDPC codes (N =
1024, R = 1/2) would be close to that of the corresponding
LDPC codes constructed by the original PEG algorithm, for
U = 4 and 16. As for U = 64, since there are too many
short cycles and variable nodes of ACE metric 12, the error-
correcting performance of the example IS-LDPC code would
suffer a clear degradation.

VI. PAPR REDUCTION WITH LOW COMPLEXITY

A. PAPR reduction Based on IS-LDPC codes

The transmitter of the OFDM system with an IS-LDPC code
for PAPR reduction is illustrated in Fig. 6. After the IS-LDPC
encoding, the coded bits are reordered and grouped based on
the U invertible subsets, such that A = [A0,A1, · · · ,AU ],
where sub-vector Au (1 ≤ u ≤ U) represents the coded bits
of the uth invertible subset Su, and sub-vector A0 represents
the other coded bits. Sub-vector A0 exists if there are some
coded bits that do not belong to any of the invertible subsets.

Let Ãu denote the sub-vector after the inversion operation,
for u = 1, 2, · · · , U , and the codeword after the inversion
operation is denoted as Ã = [A0, Ã1, · · · , ÃU ]. For the binary
IS-LDPC code, the inversion operation could be realized by
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Fig. 7. Receiver of the OFDM system with IS-LDPC codes.

XOR operation as

Ãu = Au ⊕ [bu, . . . , bu︸ ︷︷ ︸
Lu

], for u = 1, 2, · · · , U, (11)

where Lu is the length of the uth invertible subset, and
label bu ∈ {0, 1} determines whether subset u is inverted
(u = 1, 2, · · · , U ), i.e., Au is inverted when bu = 1, otherwise,
Au is not inverted. Since each invertible subset can be inverted
independently, Ã is a valid codeword no matter what vector
[b1, · · · , bU ] is employed at the transmitter. Then, the coded
bits of Ã are mapped onto a number of subcarriers, modu-
lated into phase-shift keying (PSK) or quadrature-amplitude
modulation (QAM) symbols. Finally, the transmitted signal is
formed by multicarrier multiplexing.

The label optimization module shown in Fig. 6 generates
a proper vector [b1, · · · , bU ], so that PAPR of the transmitted
signal is lowered. Since each invertible subset can be indepen-
dently inverted, the original codeword A can be transformed
into 2U different candidates (including A itself). For the ideal
case, the candidate codeword corresponding to the time signal
with the minimum PAPR is selected for transmission. In this
way, the PAPR is significantly reduced, especially when the
inversion freedom U is high. It is worth mentioning that the
inversion operation is very similar to the phase rotation in the
PTS scheme [25], if the invertible subsets are mapped onto
the sign bits of subcarriers. If this is the case, the methods
for phase optimization in the PTS scheme [30]–[33] could
be directly employed for label optimization in the proposed
scheme.

To tell whether the subsets are inverted, the labels
[b1, · · · , bU ] have to be transmitted along with the codeword.
Fig. 6 depicts a method to encode and transmit the labels, in
which U zero label bits are appended to the information bits
before encoding. In addition, the IS-LDPC encoder employs
systematic encoding, and the IS-LDPC code is constructed
such that each invertible subset has exactly one label bit. In this
way, each invertible subset consists of one label bit, a number
of information bits and parity bits. If a subset is inverted, its
label bit is flipped, and so are its information bits. Obviously,
the label bit of subset u equals to bu after inversion operation
at the transmitter, and it serves as an indication of whether
the corresponding information bits are inverted. Therefore,
the receiver could use the decoded label bit to recover its
associated information bits.

Fig. 7 presents the receiver diagram of the OFDM system.
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After multicarrier demultiplexing, demodulation and subcarri-
er demapping, the transmitted codeword Ã is recovered by the
IS-LDPC decoder, which is a standard LDPC decoder. Then,
the label bits are extracted from Ã, and the original codeword
A is recovered as

ai =

{
ãi ⊕ bu, if i ∈ Su and u = 1, 2, · · · , U
ãi, otherwise

, (12)

where ãi is the ith bit of Ã.

B. Code rate

Due to the transmission of label bits, the effective code rate
RE (number of information bits over length of codeword) for
the IS-LDPC code is (RN − U)/N , where R is the nominal
code rate of the IS-LDPC code. If this rate loss is not to
be accepted, we recommend the following modification to
the transmitter described above: (1) let the number of the
information bits and label bits be RN and U , respectively;
(2) construct an IS-LDPC code of inversion freedom U , with
code length N+U and nominal code rate (RN+U)/(N+U);
(3) encode the information bits and all-zero label bits as Fig.
6; (4) puncture U bits in the codeword. The receiver should be
modified accordingly. With these modifications, the effective
code rate is still R, and the transmitted codeword length is still
N . The bit-positions for the punctured bits could be randomly
selected by the system in advance. We will compare the
proposed system with the conventional LDPC-coded OFDM
system in terms of error performance, under the same effective
code rate, in Section VII.

C. Low searching complexity

As discussed in Section II-C, assignment of coded bits
to OFDM symbols should ensure that, for each invertible
subset, its coded bits are assigned to the same OFDM symbol.
Fig. 8 shows an example frame structure that satisfies this
requirement, in which a codeword is transmitted by K OFDM

symbols. The IS-LDPC code in the example has U disjoint in-
vertible subsets, and A1,A2, · · · ,AU represent the coded bits
that belong to the invertible subset 1, 2, · · · , U , respectively,
and A0 represents the other coded bits. As shown in Fig. 8,
each OFDM symbol is assigned with U/K complete invertible
subsets and part of A0, where U/K is assumed to be an
integer. With this assignment, the proposed scheme complies
with the code structure proposed in Section II. In this way, the
PAPR of each OFDM symbol can be independently reduced
by the inversion operation on its U/K invertible subsets.
Obviously, searching among 2U/K different candidates is
required to minimize the PAPR of each OFDM symbol. Thus,
the total number of searching is K2U/K to minimize the PAPR
of all symbols in the frame, which is dramatically lower than
2U when K is large.

VII. SIMULATION RESULTS

A. Error-correcting performance

In this subsection, we demonstrate the error-correcting per-
formance of the IS-LDPC codes by computer simulation. The
code rate is set to 1/2 or 3/4. The degree distribution pairs
for the IS-LDPC and LDPC codes are identical, which are
optimized by the density evolution technique [12], [39], with
the maximum variable node degree dvmax = 15. The highest
degree node of each invertible subset is selected to be the
label bit node in the code construction, which ensures quick
and reliable recovery of the label bits in decoding [40]. QPSK
modulation is employed at the transmitter. Note that, since the
proposed IS-LDPC code is binary, there is no limitation on the
modulation type, with which it works. The receiver employs
a standard log-likelihood ratio belief propagation (LLR-BP)
decoder with a maximum of 80 decoding iterations.

The aim of Fig. 9 is to demonstrate the error-correcting
capability of IS-LDPC code itself. Therefore, no subset in-
version is applied and all label bits are employed to convey
information bits. Fig. 9 presents bit error rate (BER) per-
formance of the IS-LDPC codes constructed by the IS-PEG
algorithm, with different N , R and U , over AWGN channel.
It is well known that PEG constructed LDPC codes have
excellent error-correcting performance, especially for short-
block-length LDPC codes, therefore its BER performance is
also presented for comparison. It is observed that the error-
correcting performance of the IS-LDPC codes is very close to
that of the corresponding LDPC codes constructed by PEG,
when U <= 32 for R = 1/2 and N = 1024, which is in
accordance with the analysis and prediction in Section IV.
A clear error-correcting performance degradation is observed
when U = 64 for R = 1/2 and N = 1024. Nevertheless, IS-
LDPC codes with longer codeword length can sustain higher
inversion freedom without significant performance degrada-
tion. This is also verified in Fig. 9, where the performance
degradation is negligible when U = 64 for R = 1/2 and
N = 2048. In the case of R = 3/4, there is no significant
degradation even when U = 64 for N = 1024, and when
U = 128 for N = 2048.

The simulations of Fig. 10 and Fig. 11 are to demonstrate
the error-correcting capability of the IS-LDPC code in an
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OFDM system with subset inversion. To compare the IS-LDPC
and LDPC codes with the same effective code rates, the punc-
tured IS-LDPC codes described in Section VI-B is employed
in the simulation. Fig. 10 presents the BER performance of the
IS-LDPC codes with N = 1024, effective code rate RE = 1/2,
and different U , over AWGN and uncorrelated Rayleigh fading
channel. It is observed that there is a clear gap between the
BER performance of IS-LDPC codes and the corresponding
PEG constructed LDPC code. This gap is caused by the error
propagation that occurs with fail-decoded label bits and wrong
inversion of their information bits at the receiver. Nevertheless,
the BER performance loss between the IS-LDPC code and
corresponding LDPC code is less than 0.2 dB at BER of
10−5, when U ≤ 32. Since frame error rate (FER) perfor-
mance is more important than BER performance for wireless
communications under fading channels, Fig. 11 presents FER
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performance of the IS-LDPC codes with N = 1024, different
RE and U , over AWGN channel and uncorrelated Rayleigh
fading channel. It is observed that there is no significant
FER performance loss for IS-LDPC codes when U ≤ 32,
over AWGN channel. The FER performance loss is slightly
increased when the uncorrelated Rayleigh fading channel is
applied, which is about 0.2 dB at FER of 10−2 when U = 32.

Based on the above simulation results, we conclude that the
proposed scheme exhibits excellent error performance, which
is very close to that of LDPC codes constructed by the PEG
algorithm, for a wide range of U .

B. Searching complexity and PAPR performance

In this subsection, searching complexity of the proposed
scheme is discussed with an example. In addition, the PAPR
reduction performance of the proposed scheme is demon-
strated by computer simulation. The OFDM system in the
simulation employs 128 subcarriers (NC = 128) and QPSK
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modulation. The codeword length of the IS-LDPC codes
is N = 1024 and each codeword is transmitted by four
OFDM symbols, i.e., K = 4. Punctured IS-LDPC codes
are employed and the effective code rate is set to 1/2. The
degree distribution pair for the codes is optimized by the
density evolution technique [12], with the maximum variable
node degree dvmax

= 15. The OFDM signal is four times
oversampled to better approximate the PAPR of continuous-
time OFDM signals.

The IS-LDPC codes employed in the OFDM system have
U disjoint invertible subsets, and the uth invertible subset is
Su = {u, u+ U, · · · , N − U + u} for u = 1, 2, · · · , U . Cod-
ed bits of S(k−1)U/4+1 to SkU/4 are randomly mapped onto the
subcarriers of the kth OFDM symbol, k = 1, 2, 3, 4. By this
assignment, the proposed scheme has a manageable searching
complexity, due to the fact that the number of invertible subsets
in each OFDM symbol is U/K. For example, when U = 32,
the number of searching is 28 for each OFDM symbol, and
the number of searching is 4 × 28 for each codeword. In
contrast, for the scheme of [17] with a conventional LDPC
code and 32 label bits, the number of searching is 232 for each
codeword, which is 222 times that of the proposed scheme.
This example demonstrates that, the searching complexity of
the proposed PAPR scheme is dramatically less than that of
[17] for OFDM systems with multiple-OFDM-symbol frames,
when K is large.

To demonstrate the PAPR performance of the proposed
scheme, PAPR performance of the PTS scheme, which is a
typical candidate generation scheme, is presented for compar-
ison. The PTS scheme employs random partition [2] [25] and
its phase factors are chosen from {+1,−1}. Fig. 12 plots the
complementary cumulative distribution functions (CCDF) of
the PAPRs. It is observed that, the PAPR reduction increases
with the number of candidates (2U ), and the proposed scheme
offers about 0.7 dB, 2.4 dB, 4.1 dB PAPR reduction at
CCDF = 10−4, when U = 8, 16 and 32, respectively. Note
that in this simulation, inverting a bit means the inverting
of the in-phase or quadrature component of corresponding
QPSK symbol, since the coded bits of all invertible subsets
are mapped onto sign bits of symbols. Due to this equivalence,
it is not surprising that the proposed PAPR scheme has
the similar PAPR performance as the PTS scheme, when
U/K (the number of invertible subsets per OFDM symbol)
equals to W (the number of PTS partitions). Therefore, the
proposed scheme has the similar searching complexity and
PAPR reduction performance as the PTS scheme, as long as
the candidate number of each OFDM symbol is the same for
both schemes.

Based on the above simulation results, we conclude:
compared with the existing coding-based candidate genera-
tion schemes, the proposed scheme dramatically reduces the
searching complexity, when K is large; and the proposed
scheme achieves typical PAPR reduction performance of can-
didate generation schemes.

VIII. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a novel type of LDPC codes
(IS-LDPC code) for PAPR reduction in OFDM systems.

The advantages of the proposed IS-LDPC codes could be
summarized as follows:

• Compared with the existing coding-based candidate gen-
eration schemes, the proposed scheme reduces the search-
ing complexity from 2U to K2U/K , where 2U is the
number of candidates for each codeword and K is the
number of OFDM symbols employed to transmit the
codeword. Obviously, the reduction of searching com-
plexity is dramatic when K is large.

• The IS-LDPC codes exhibit excellent error performance,
which is very close to that of the LDPC codes constructed
by the PEG algorithm, for a wide range of U .

• The proposed PAPR reduction scheme demonstrate sim-
ilar PAPR performance as the PTS scheme, when U/K
(the number of invertible subsets per OFDM symbol)
equals to W (the number of PTS partitions).

Due to the dramatically reduced searching complexity and
excellent error performance, the IS-LDPC codes make it
possible to support huge number of candidates for PAPR
reduction, which is especially essential for OFDM systems
that employs multiple OFDM symbols to transmit a codeword.
Therefore, the proposed PAPR reduction scheme based on
IS-LDPC codes could serve as an attractive PAPR reduction
solution for future multicarrier communication systems.

In the future works, we aim to improve the error perfor-
mance of IS-LDPC codes with higher inversion freedom, and
design more practical IS-LDPC codes, such as quasi-cyclic
IS-LDPC codes.
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