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Partition Optimization in LDPC Coded
OFDM Systems with PTS PAPR Reduction

Li Li, Daiming Qu and Tao Jiang

Abstract—A joint decoding scheme was proposed in [1] to
recover low-density parity-check (LDPC) codeword and partial
transmit sequence (PTS) phase factors, for OFDM systems with
low peak-to-average power ratio (PAPR). However, the error-
correcting performance of the joint decoding scheme heavily
relies on how the OFDM subcarriers are partitioned into groups
in the PTS scheme. With a pseudo-random partition, the joint
decoding scheme provides satisfactory error-correcting perfor-
mance only when the number of PTS groups is very small [1].
In this paper, we formulate an optimization problem to improve
the joint decoding performance by optimizing the partition.
Furthermore, two greedy-based algorithms are proposed to solve
the problem. Simulation results show that the joint decoding
scheme with the proposed partition algorithms provides satisfac-
tory error-correcting performance for a larger number of PTS
groups, than it does with the pseudo-random partition. With
the improved performance, better PAPR performance can be
supported.

Index Terms—Peak-to-average power ratio (PAPR), orthogonal
frequency division multiplexing (OFDM), low-density parity-
check (LDPC), greedy algorithm, partial transmit sequence
(PTS).

I. INTRODUCTION

Orthogonal frequency-division multiplexing (OFDM) has
been widely adopted in various wireless communication stan-
dards, due to its capability to efficiently cope with frequency
selective channels. However, one major drawback of OFDM
systems is high peak-to-average power ratio (PAPR). Among
a variety of PAPR reduction techniques [2], the partial trans-
mit sequence (PTS) scheme has attracted a lot of attention,
since it introduces no distortion in the transmitted signal and
achieves significant PAPR reduction [3], [4]. However, the
PTS phase factor information is required at the receiver as
side information, which decreases the transmission efficiency
or complicates the system design.

In [1], a joint decoding scheme was proposed to recover
low-density parity-check (LDPC) [9]–[11] codeword and PTS
phase factors, which avoids the transmission of PTS side
information. Particularly, the PTS processing is viewed as a
stage of coding, and the parity-check matrix and Tanner graph
of the concatenated LDPC-PTS code are derived in [1]. With
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the derived parity-check matrix and Tanner graph, the LDPC
codeword and PTS phase factors are jointly decoded using a
standard LDPC decoder. Compared with the other schemes to
recover the phase factors, such as [5]–[8], the joint decoding
scheme simplifies the system design, since it does not require
the detection of phase factors before decoding.

In this paper, it is pointed out that the error-correcting
performance of the joint decoding scheme heavily relies
on how the OFDM subcarriers are partitioned into groups
in the PTS scheme. With a pseudo-random partition, the
joint decoding scheme provides satisfactory error-correcting
performance only when the number of PTS groups is very
small [1]. Then, we formulate an optimization problem to
improve the joint decoding performance by optimizing the
partition, and propose two greedy-based algorithms to solve
the problem. Simulation results show that, compared with the
pseudo-random partition, the proposed partition method offers
much better joint decoding performance in terms of error
correcting, convergence speed and complexity.

The remainder of this paper is organized as follows. In
Section II, we briefly recall the joint decoding scheme in [1]
with a more general presentation. The optimization problem
and partition algorithms are presented in Section III. Then,
the simulation results are presented in Section IV, followed
by conclusions and future works in Section V.

II. SYSTEM MODEL

In the PTS scheme, the OFDM subcarriers are partitioned
into several groups, then the groups are phase rotated sepa-
rately with proper phase factors [3], [4]. As explained in [1],
rotating a phase-shift keying (PSK) or quadrature-amplitude
modulation (QAM) symbol with Gray mapping is equivalent
to flipping several bits of the symbol, when the rotating phase
factors are chosen from {1;−1}. For example, there are two
bits stand for the sign of the I-phase and Q-phase component,
respectively, among the four bits of a Gray mapping 16QAM
symbol. In the case of multiplying the Gray mapping 16QAM
symbol by phase factor of −1, only the two sign bits are
flipped and the other two bits are never affected. Therefore, for
clarity purpose, we briefly recall the joint decoding scheme [1]
with a more general presentation, in which the phase rotating
is replaced with bit flipping.

A. PAPR Reduction by Flipping Bit Groups in LDPC Coded
OFDM Systems

As shown in Fig. 1, the LDPC codeword of length
N , denoted as A, is partitioned into U coded bit groups
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Fig. 1. The system diagram for PAPR reduction by flipping bit groups.

A1,A2, · · · ,AU . For clarity, we reorder the coded bits such
that A = [A1,A2, ...,AU ]. Moreover, let S denote the set of
bit indexes of A, i.e., S = {1, 2, · · · , N}, and Su denote
the set of bit indexes of Au (u = 1, 2, · · · , U ). Apparently,
Su ⊂ S , and Su

∩
Su′ = ∅ if u ̸= u′. Let Nu (0 < Nu <

N,
∑U

u=1 Nu = N) denote the number of elements in Su and
iku denote the k-th element of Su, then Su = {i1u, i2u, · · · , iNu

u },
for u ∈ 1, 2, · · · , U . Note that, Nu is not necessarily the
same for different u. Accordingly, the parity-check matrix
of the LDPC code, denoted by H, are divided into U sub-
matrices, which are denoted by H1,H2, · · · ,HU , respectively.
Let h(i) (1 ≤ i ≤ N ) denote the ith column of H, then
Hu = [h(i1u), h(i2u), · · · ,h(iNu

u )] , for u ∈ 1, 2, ..., U .
To reduce PAPR, the phase optimization module generate

U −1 phase bits, denoted as bu (bu ∈ {0, 1}, 1 ≤ u ≤ U −1),
to control the flipping of the corresponding bit group Au: the
bit group Au is flipped if bu equals to 1, otherwise Au remains
unchanged. Let Ãu (u = 1, 2, · · · , U) denote the output bits
of the flipping operation at the transmitter, then

Ãu =


Au ⊕ [bu, . . . , bu︸ ︷︷ ︸

Nu

], u = 1, 2, · · · , U − 1

AU , u = U

, (1)

where ⊕ represents modulo 2 addition. Let Ã denote
the codeword after the flipping operation, i.e., Ã =
[Ã1, · · · , ÃU−1,AU ]. Note that, the coded bits in AU are
never flipped due to two facts: 1) it is not necessary to
involve all subcarrier groups in phase rotation of the PTS
processing [3], [4]; 2) some bits are never affected even their
corresponding symbols are multiplied by −1 [1]. Finally, the
transmitted signal is formed after PSK/QAM mapping and
OFDM multiplexing.

Apparently, the original codeword A can be transformed
into 2U−1 different candidates (including A itself with all-zero
phase bits), with the flipping operation. For the best case, the
candidate corresponding to the time signal with the minimum
PAPR is selected for transmission. Thus, the PAPR can be
significantly reduced by flipping the bit groups, especially
when the group number U is large.

B. Joint Decoding of LDPC Codewords and Phase bits

As proposed in [1], the PTS processing is viewed as a stage
of coding, and the parity-check matrix and Tanner graph of the
concatenated LDPC-PTS code are derived. With the derived
parity-check matrix and Tanner graph, the LDPC codeword
and phase bits can be jointly decoded using a standard LDPC
decoder. Here, the concatenated LDPC-PTS codeword, which
consists of Ã and phase bits, is denoted by,

AEX = [(AEX)1, · · · , (AEX)U−1,AU ] (2)

where (AEX)u = [Ãu, bu] for u = 1, 2, · · · , U − 1. Obviously,
the transmitted codeword Ã is a punctured version of AEX.
The extended parity-check matrix that corresponds to AEX
is denoted as HEX = [(HEX)1, · · · , (HEX)U−1,HU ], where
(HEX)u is the extension of Hu by appending column gu, which
corresponds to the phase bit bu, i.e.,

(HEX)u = [h(i1u), · · · ,h(iNu
u ), gu], u = 1, · · · , U − 1. (3)

According to Theorem 1 in [1], the appended column gu is
generated with the following rule in GF(2):

gu =
∑

iku∈Su

h(iku), for u = 1, 2, · · · , U − 1. (4)

With the appended columns, each row of (HEX)u (1 ≤ u ≤
U − 1) has even hamming weight, i.e, the number of nonzero
elements in each row of (HEX)u is even. Note that, there is no
need to extend HU , since the bit group AU is never flipped. In
addition, the Tanner graph corresponding to HEX is called as
extended Tanner graph, which is the extension of the original
Tanner graph by adding U − 1 phase nodes and the edges
connected to the phase nodes, where the U − 1 phase nodes
correspond to the U − 1 phase bits, respectively.

At the receiver, after multicarrier demultiplexing and
demapping, the extended LDPC codeword AEX is recovered
by a standard LDPC decoder. The decoder employs HEX as the
parity-check matrix and takes the received Ã as input (note that
Ã is a punctured version of AEX). Then, the decoded phase bits
are extracted from the decoded AEX, and the original LDPC
codeword A is obtained after the flipping operation controlled
by the decoded phase bits.

However, the degrees of phase nodes, i.e., the hamming
weights of gu (1 ≤ u ≤ U − 1), are very high, when the
pseudo-random partition of S1,S2, · · · ,SU is employed [1].
As shown in Table I of [1], the phase node degrees are about
M/2, where M denotes the number of check nodes in the Tan-
ner graph. A great number of four cycles are introduced with
the high-degree phase nodes, which leads to slow convergence
of decoding and error-correcting performance degradation,
especially when the group number U is large.

III. PARTITION OPTIMIZATION

In this section, we formulate the optimization problem to
improve the error-correcting performance of joint decoding by
group partitioning, and propose two greedy-based algorithms
to solve the problem.
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A. Optimization Objective

Since high-degree phase nodes are the direct cause of perfor-
mance degradation, a natural and straightforward optimization
objective is to minimize the degrees of phase nodes. Therefore,
our optimization aims to minimize the highest degree of the
phase nodes by choosing elements for Su. In other words,
we aim to minimize the maximum hamming weight of the
columns {g1, g2, · · · , gU−1}. According to (4), we have

Γ (gu) = Γ

 ∑
iku∈Su

h(iku)

 , for u = 1, 2, · · · , U − 1, (5)

where Γ(·) represents the Hamming weight of a vector. Thus,
the optimization problem is formulated as

min

 max
u=1,2,...,U−1

Γ
 ∑

iku∈Su

h(iku)

 , (6a)

subject to S1 ∪ S2 ∪ ... ∪ SU = S, (6b)
Su ∩ Su′ = ∅, if u ̸= u′, (6c)
|Su| = Nu, (6d)

where | · | denotes the number of elements in a set.
It is worth noting that other constraints on groups could

be included in the formulation. For example, since the phase
rotation of a Gray-mapped PSK/QAM symbol only flips its
sign bits and does not change the other bits [1], it is highly
recommended that only the bits affected by the phase rotation
be chosen for Su(1 ≤ u ≤ U−1), and the other bits be kept in
SU . In this case, the bit flipping operation is exactly the same
as the phase rotation operation of PTS. Otherwise, the flipping
operation can not be accomplished by simply rotating the
symbols, which will increase the implementation complexity.
Anyway, we assume that any coded bits can be included in
any Su for simplicity of presentation in this paper.

Obviously, exhaustive search for the optimal solution is
unacceptable in terms of complexity, when the codeword
length or group number is large. In the followings, we propose
two algorithms to obtain the sub-optimal solutions based on
greedy criterion, which significantly reduce the computational
complexity and achieve satisfactory results.

B. Greedy Partition (GP)

In this subsection, we propose a low-complexity partition
algorithm to obtain a sub-optimal solution, called as greedy
partition (GP).

The key idea of the GP algorithm is explained as follows:
For initialization, we set Su = ∅ for u = 1, 2, · · · , U − 1,
and SU = {1, 2, · · · , N}; For each step of the algorithm, we
choose an element from SU , denoted as i, and move it to Su

(u ∈ {1, 2, · · · , U − 1}) according to the following criterion
in GF(2):

min
i∈SU

Γ

 ∑
iku∈Su

h(iku) + h(i)

. (7)

Eq. (7) means that the Hamming weight Γ

( ∑
iku∈Su

h(iku)

)
is

always minimized after adding a new element to Su. Due to
this criterion, we call it greedy partition. The detailed GP
algorithm is presented in Algorithm 1. In Algorithm 1, Lu

denotes the number of elements to be assigned to Su, and
Lu = Nu (u = 1, 2, · · · , U − 1) if S1,S2, · · · ,SU−1 are
initialized to ∅.

Algorithm 1 GP Algorithm
for j = 1 to max(Lu) do

for u = 1 to U − 1 do
if j ≤ Lu then

Choose i in SU to satisfy Eq. (7).
Update Su and SU as: Su = Su ∪ {i}, SU = SU\i.

end if
end for

end for

C. Iterative Greedy Partition (IGP)

In this subsection, we propose an iterative greedy partition
(IGP) algorithm to iteratively improve the partition. In each
iteration of the IGP algorithm, with the partition result of the
last iteration, we execute the GP-Reverse (GP-R) algorithm,
then execute GP algorithm again to obtain a new partition
result.

The GP-R algorithm is the reverse operation of the GP
algorithm: for each step, an element is moved from Su

(u = 1, 2, · · · , U − 1) back to SU . The criterion of choosing

the element is that the Hamming weight Γ

( ∑
iku∈Su

h(iku)

)
is

minimized after deleting the element (denoted as i), i.e.,

min
i∈Su

Γ

 ∑
iku∈Su

h(iku)− h(i)

. (8)

The number of elements to be deleted is set to be drNu for
Su, u = 1, 2, · · · , U − 1, where 0 < dr < 1. The detailed
GP-R algorithm is summarized in Algorithm 2.

Algorithm 2 GP-R Algorithm
for j = 1 to max(drNu) do

for u = 1 to U − 1 do
if j ≤ drNu then

Choose i from Su to satisfy Eq. (8).
Update Su and SU as: Su = Su\i, SU = SU ∪ {i}.

end if
end for

end for

As shown in Fig. 2, the proposed IGP algorithm iteratively
executes the GP and GP-R algorithm until the iteration number
reaches the predefined maximum nmax. Note that, except for
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the first iteration, Lu in the GP algorithm equals to drNu, i.e.,

Lu =

{
Nu, n = 1

drNu, 1 < n ≤ nmax

. (9)

Since one partition result, i.e., S1,S2, · · · ,SU , is obtained
in each iteration, there are nmax partition results when the
iteration stops. Finally, we choose the partition result that
minimizes the highest degree of the phase nodes as the final
partition result.

IV. SIMULATION RESULTS

In this section, we demonstrate the error-correcting and
PAPR performance of the proposed partition method by com-
puter simulation. The OFDM system employs quasi-cyclic
LDPC codes (QC-LDPC) of length 1152, QPSK or 16-QAM
modulation, and cyclic prefix of 1/4 the symbol duration. The
subcarrier number is 576 for QPSK modulation, and 288 for
16-QAM. For the LDPC codes of all rates, we employ QC-
LDPC codes in the IEEE 802.16e standard [12]. Each bit
group consists of N/U bits, i.e., Nu = N/U(1 ≤ u ≤ U).
Without sacrificing the PAPR performance, group AU are
excluded from the flipping operation. The iteration number of
the proposed IGP method is nmax = 100. In all simulations,
the phase bits are not transmitted by the transmitter. The
receiver employs a log-likelihood ratio BP (LLR-BP) decoder
of 40 iterations, which is far less than the 500 iterations
employed in [1].

Table I shows the degrees of phase nodes with different
U , different partition methods, dr = 1/4 and code rate of
1/2. It is observed that the phase node degrees are very high
when employing the pseudo-random partition, and they are
significantly reduced with the proposed GP and IGP methods.
Since the number of four cycles decreases with the phase node
degrees, the decoding convergence speed and error-correcting
performance will be improved with the proposed GP and IGP
method. Moreover, the decoder complexity is also reduced
with lower phase node degrees. It is also observed that IGP

TABLE I
DEGREES OF PHASE NODES WITH DIFFERENT U , CODE LENGTH OF 1152

AND CODE RATE OF 1/2. nmax = 100 AND dr = 1/4 FOR IGP.

Degrees of
Average degree

b1, · · · , bU−1

Pseudo-Random, U = 4 270, 290, 263 274

GP, U = 4 58, 59, 56 58

IGP, U = 4 30, 27, 27 28

Pseudo-Random, U = 8
249, 237, 250, 232,

245
251, 256, 237

GP, U = 8
56, 62, 60, 56,

58
55, 56, 63

IGP, U = 8
37, 36, 34, 37,

35
34, 35, 32

Pseudo-Random, U = 16 - 168

GP, U = 16 - 47

IGP, U = 16 - 40

Pseudo-Random, U = 24 - 123

GP, U = 24 - 38

IGP, U = 24 - 35
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Fig. 3. FER performance with different partition methods, different U , code
rate of 1/2, QPSK modulation, over AWGN channel.

results in lower phase node degrees than GP, therefore it is
anticipated that better error-correcting performance would be
achieved with IGP. For the selection of dr, we have tested with
different dr, and found that the average phase node degrees are
satisfactory for a wide range of U when dr = 1/4. Therefore,
we only present the results of dr = 1/4 in this paper.

Fig. 3 presents the frame error rate (FER) performance of
the joint decoding scheme with different partition methods,
different U , code rate of 1/2 and QPSK modulation, over
AWGN channel. FER performance of decoding with ideal
phase factor information is also presented for comparison. It is
observed from Fig. 3 that the joint decoding scheme with GP
and IGP achieves almost the same FER performance as the
ideal case, for U = 8 and 16. In contrast, the scheme with the
pseudo-random partition suffers significant performance loss
when U ≥ 8. The performance loss with the pseudo-random
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partition is not acceptable for U = 16 and 24, even when 500
decoding iterations are employed as [1]. It is also observed
that the performance of GP is slightly inferior to that of the
IGP. Therefore, we only present simulation results with the
IGP algorithm in the followings.

The above simulations demonstrate that the proposed par-
tition method not only improves the error-correcting per-
formance of the joint decoding scheme, but also improves
the convergence speed so that less iterations are required in
decoding.

The FER and bit error rate (BER) curves of the joint
decoding scheme with the proposed IGP algorithm, different
U , different code rates, and QPSK modulation, over AWGN
channel are plotted in Fig. 4. Compared with the ideal case,
the FER performance degradation with the proposed IGP
algorithm is less than 0.2dB at FER of 10−3 when U ≤ 16,
for both the code rate of 1/2 and 5/6. It is also observed that,
the BER performance loss is greater than its corresponding
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Fig. 6. PAPR performance of the OFDM system with different partition
methods, different U , and QPSK modulation.

FER performance loss, due to the error propagation that
occurs with fail-decoded phase bits and wrong flipping of
their information bits after decoding. Nevertheless, FER is a
measure of performance that is more important than BER for
wireless communication systems with automatic repeat request
(ARQ) mechanisms. Fig. 5 presents FER performance of the
joint decoding scheme with the IGP algorithm, different U ,
different code rates, QPSK and 16QAM modulation, over
uncorrelated Rayleigh fading channel. Compared with the
ideal case, the performance degradation with the proposed IGP
algorithm is less than 0.2dB (0.5dB) at FER of 10−3 for QPSK
(16QAM) modulation, when U ≤ 16.

Fig. 6 plots the complementary cumulative distribution func-
tions (CCDFs) of PAPR for the OFDM signal with PTS and
different partition methods. PAPR of the original OFDM signal
is also plotted for comparison. QPSK modulation is employed
in the simulation. The time domain OFDM signals are four
times oversampled to approximate the PAPR of continuous-
time OFDM signals. It is observed from Fig. 6 that the OFDM
signals with the IGP and pseudo-random partition possess
almost the same PAPR performance, and they both achieve
about 2.9, and 4.1dB PAPR reductions at CCDF = 10−4 when
U = 4 and 8, respectively.

V. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed algorithms to improve the
joint decoding performance by optimizing the group partition,
for OFDM systems with LDPC coding and PTS PAPR reduc-
tion. Compared to the joint decoding with the pseudo-random
partition in [1], the proposed method is more practical and
attractive in the following two aspects: 1) it provides nearly
perfect error-correcting performance for a larger number of
PTS groups; 2) it possesses faster decoding convergence and
lower decoder complexity. With the improved performance,
better PAPR performance can be supported.

As future works, the following two aspects could be consid-
ered to further improve the decoding performance: 1) try other
optimization objectives, such as reducing the number of short-
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length cycles; 2) design better algorithms so that the degrees
of phase nodes are further reduced, especially for large U .

REFERENCES

[1] L. Li and D. M. Qu, “Joint decoding of LDPC code and phase factors
for OFDM systems with PTS PAPR reduction,” IEEE Transactions on
Vehicular Technology, vol. 62, no. 1, pp. 444-449, Jan. 2013.

[2] T. Jiang and Y. Wu, “An overview: peak-to-average power ratio reduction
techniques for OFDM signals,” IEEE Transactions on Broadcasting, vol.
54, no. 2, pp. 257-268, June 2008.

[3] S. H. Muller and J. B. Huber, “OFDM with reduced peak-to-average
power ratio by optimum combination of partial transmit sequences,”
IEE Electronics Letters, vol. 33, no. 5, pp. 368-369, Feb. 1997.

[4] L. J. Cimini and N. R. Sollenberger, “Peak-to-average power ratio
reduction of an OFDM signal using partial transmit sequences,” IEEE
Communications Letters, vol. 4, no. 3, pp. 86-88, Mar. 2000.

[5] A. D. S. Jayalath and C. Tellambura, “SLM and PTS peak-power re-
duction of OFDM signals without side information,” IEEE Transactions
on Wireless Communications, vol. 4, no. 5, pp. 2006-2013, Sept. 2005.

[6] O. Muta and Y. Akaiwa, “Peak power reduction method based on
structure of parity-check matrix for LDPC coded OFDM transmission,”
Proceedings of IEEE Vehicular Technology Conference, Apr. 2007, pp.
2841-2845.

[7] O. Muta and Y. Akaiwa, “Weighting factor estimation method for peak
power reduction based on adaptive flipping of parity bits in Turbo-coded
OFDM systems,” IEEE Transactions on Vehicular Technology, vol. 57,
no. 6, pp. 3551-3562, Nov. 2008.

[8] Y. C. Tsai,Y. L. Ueng, “Multiple-candidate separation for PTS-based
OFDM systems by Turbo decoding,” Proceedings of IEEE Vehicular
Technology Conference, May 2010, pp. 1-5.

[9] R. G. Gallager, “Low density parity check codes,” IRE Transactions on
Information Theory, vol. IT-8, pp. 21-28, Jan. 1962.

[10] T. J. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity
approaching irregular low-density parity-check codes,” IEEE Transac-
tions on Information Theory, vol. 47, no. 2, pp. 619-637, Feb. 2001.

[11] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, “Im-
proved low-density parity-check codes using irregular graphs,” IEEE
Transactions on Information Theory, vol. 47, no. 2, pp. 585-598, Feb.
2001.

[12] IEEE 802.16-2005, “Part 16: air interface for fixed and mobile broad-
band wireless access systems amendment 2: physical and medium access
control layers for combined fixed and mobile operation in licensed bands
and corrigendum 1,” Feb. 2006.


