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_Abstract—The spectral responses of a series of heterojunction GeC photodiodes are therefore interesting both fundamentally
diodes of p-type Ge,C, on n-type Si (100) substrates were and technologically. We report here on measurements of the
measured by Fourier transform infrared (IR) spectroscopy. Alloy photoresponse of GeC—Si heterojunction photodiodes on Si

gﬁirbssgigrtr;;hég:am?reeOg?rz\(/)vgagyarr]r:jolﬁgl;éaégpe:én piggzxgvi?ﬁ substrates, to determine if the layers are suitable for device

different B concentrations. With increasing C content, the diode applications.

dark current decreased, and the optical absorption band edge

shifted toward higher energy by 70 meV for 0.12 atomic persent Il. EXPERIMENTAL APPROACH
of C. The increase in energy was attributed to the composition
dependence of the bandgap rather than to strain relaxation, . L
because the GeC layers were nearly relaxed with the same strain. A- Device Fabrication

The photoresponsivity was 0.07 A/W at a wavelength of 1.56m, The p-doped GeC layers were grown by solid source molec-
and 0.2 A/W at a wavelength of 1.3um. These measurements ular beam epitaxy (MBE) at 408C using methods described

show that GeC photodetectors have good properties and reason- . .
able response at technologically important near-IR wavelengths €/Séwhere [4], [S]. The substrates were n-type Si (100) with a

and can be fabricated by heteroepitaxy for compatibility with Si  doping concentration of 2 10'> cm™2. The Ge source was a
integrated circuits. thermal effusion cell operating from 13XC to 1325°C with
Index Terms—Epitaxial growth, germanium alloys, infrared & pyrolyt?c boron. nitr.ide (PBN) crucible. The C source was
detectors, infrared spectroscopy, optical measurements, photodi- & pyrolytic graphite filament heated by currents up to 48 A.
odes, semiconductor heterojunctions. The p-type dopant source was a high temperature effusion cell
containing elemental B in a crucible of pyrolytic graphite in a
W metal jacket, operating from 145@ to 1650°C. The alloy
growth rate was 1.5 nm/min. No surfactants such as atomic H
NFRARED (IR) photodetectors (PD’s) for the optical fibe{yere used during growth, and no changes in growth rate with
communication wavelengths of 1.3 and 168 are typi- doping or composition were observed. The layers were 560 nm
cally made of Ge or InGaAs [1]. Epitaxial IR detectors on Shick, except for one sample that was 520 nm thick (SGC-84
substrates are attractive for circuit integration, provided thgf Taple I).
the detector properties and the reliability are adequate [2]. Thex-ray diffraction indicated that the epitaxial layers were
4% lattice mismatch of epitaxial Ge on Si produces strain thghgle-crystals oriented to the substrate. Measurements of the
relaxes by dislocation and defect formation in thick layers [1§ymmetric and asymmetric X-ray reflections indicated that the
The addition of C to Ge reduces the strain thus IImItlng trﬁrain was near I so that the a||oy |ayers were near]y re-
formation of dislocations, and also reduces the diffusion @fxed. In Table I, the strain is given by the difference between
dopants [3]. The effects of C on device properties are not Wgle perpendicular and parallel lattice constants divided by the
well understood. The optical and electrical characteristics fflaxed lattice constant. The substitutional C fractions given
in Table | were obtained from the effective lattice constants of
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TABLE |
PrROPERTIES OF THEGE —, C, LAYERS USED IN THE P-N HETEROJUNCTIONPD’S INCLUDING
CoMPOSITION, B DOPING LEVEL, FORWARD CURRENT IDEALITY FACTOR, BANDGAP ENERGY, PHONON
ENERGY AND STRAIN. THE n-TyPE Si (001) S5BSTRATESHAD A DOPING LEVEL OF 3 x 10'° cM ~3. THE
HoLE CARRIER CONCENTRATIONS ARE LISTED BENEATH THE B IMPURITY CONCENTRATIONS. THE LAYER
THICKNESS WAS 560 NM FOR ALL SAMPLES EXCEPT SGC-84, WiIcCH WAsS 520NM THICK. THE GE
Diobe Is A CoMMERCIAL BuLk GE HOMOJUNCTION AS DESCRIBED IN THE TEXT.

Sample C content B conc. Forward E h Strain
(atomic %) | hole conc. ideality €V) (meV)
(cm'3) factor

Ge diode 0 - 0.639 10 -

SGC102 0 B 12x 10 17 1.04 0.657 14 28%10-3
p: 7.5x10 17

SGC103 0 B 1.2x 10 19 1.84 0.634 17 24%10-3
p: 1.8x10 19

SGC80 0.06% | B:3x1018 1.22 0.731 11 27x103
p: 2.5x10 18

SGC81 0.08% | B.4x 1017 1.09 0.741 11 31 x 103
p: 6.8x10 17

SGC82 0.11% | p:3x1019 1.08 0.715 12 32%10-3
p: 1.1x10 19

SGC84 0.12% | B:sx 1018 1.01 0.728 11 26x10-3
p: 1.9x10 18

the doping was constant versus depth. Measurements across

the wafer surface indicated that the doping level was uniform E10°% o

within 10% over a lateral distance of 1 cm. Table | gives the <

physical properties of the samples. For the same growth con- >

ditions, there is a slight trend of higher B concentration with C E 1ot PPt

fraction, possibly due to an increase in the sticking coefficient 2 ,/

of B with C, or perhaps to an artifact due to composition- = !

dependent yields with SIMS. Hall effect measurements yielded @ ——SGC80

the hole carrier concentratiorig) given in Table | that were 3 10'F 34

reasonably close to the B doping concentration except for - PN

sample SGC-102, perhaps due to experimental error. g ﬂ‘”s‘GC‘“ . . .

Mesa diodes with a junction area of 0.2 fhmand a light
sensitive area (not shaded by the contacts) of 0.182 mm
were fabricated using photolithography and wet chemical
etching [8]. Electrical contacts of Ti—-Au metal were thermallyig- 1. Dark current density versus reverse bias voltage of p-N type

. . _yCy—Si heterojunction diodes on Si (001) substrates with different
Yy

evapora_lted to_a th|Ckne_SS of 60 nm/300 nm, respectively, %%position and doping, given in Table I. The reverse leakage currents

shown in the inset to Fig. 1. decreased significantly with C fraction and with doping concentration. The

inset shows the diode structure.

-25 -20 -15 -10 -5 0
Applied Bias (Volts)

B. Electrical Measurements surface recombination rates, possibly due to: (1) a decrease in

Current versus voltage/£V) measurements at room tem-+he intrinsic carrier concentration; in the GeC layer, (2) a
perature showed rectifying characteristics, with reverse breakeduced dislocation density due to strain compensation, and (3)
down voltages ranging from 11 to 24 V, as in Fig. 1. Thehanges in the energy bandgap and band offsets. The diode p-
reverse leakage dark current decreased significantly with imjunctions were exposed on the mesa sidewalls, and an extra
creasing C content and with increasing hole concentration. processing step of passivating the junctions with Sif@r
photodiode applications, a low dark current produces less noeseample, may help reduce the dark current.
and improves the detectivity [1]. The decrease in dark currentFor completeness, the forward bias ideality factors are
with C content was attributed to reductions in the bulk anidcluded in Table I, although it is not our intent to report
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here on the forward bias characteristics of the diodes. Ideality
factors near 1 imply diffusion current, and ideality factors

near 2 imply recombination current. Due to the high series :gggég’?éggi
resistance of the diodes, the values given here were obtained 0.1} "'f_g\f“iig:)c P

at small forward bias and may have significant error. A more
highly doped substrate and different contact metals may help
reduce the series resistance.

0.01:

C. Optical Measurements

The spectral response of the photodiodes was measured at
room temperature using a Biorad FTS-60A Fourier transform
IR spectrometer (FTIR) over the spectral range from 6000 to
10000 cntt, using a quartz beam splitter and a glowbar light
source. FTIR resolutions of 16 to 32 cth were used for Fig. 2. Spectral responsivity of Ge, C,—Si p-N heterojunction diodes with

these measurements. The FTIR spectrometer was equipfiéerent C fractions at-3-V reverse bias. All Ge-, Cy layers had nearly

. . . e same strain and thickness (as in Table I). The samples shown here had
with @ UMA 500 microscope, and the photodiodes we Igole concentrations from 10 to 10'* cm~3. The blue-shifted absorption

inserted into the microscope beam path, using needle prok@s attributed to the alloying effect of C as indicated by the bandgaps in
for electrical contact. To reduce the contribution of the Sible I. For a given ? Poné'e_nt, rIhe ban/tigap ensrgieshdecreaseld with doping
. . T . ncentration, as explained in the text. At zero bias, the spectral responsivity
SupStrate to the dlo_de photocurrent, a high-resistivity Si Waf%?’all the diodes was reduced to about half of the magnitude 3.
polished on both sides, was placed in the FTIR beam path to
remove photon energies above 1.1 eV. A low impedahdé
amplifier (Hewlett-_Packard 41408), Wh'Ch was ac-coupled tr%lther than to strain compensation. The Si layer is relatively
the FTIR electronics, collected the diode photocurrent. The
. . . transparent at these wavelengths, and the photoresponse was
ac-coupling of the measured signal yields the photocurrenf. . .
. ; attributed fully to the GeC layer. At zero bias, the diodes
with the dc dark current removed. The diode photocurrent w P . ] .
g . showed a similar increase in absorption energy with C, but
referenced to the measured reflectivity of a thick Au met o ; .
: : que responsivity magnitude was about half that-&8V bias
pad located on each photodiode sample. The Au reflectivi .
. ; . all wavelengths. The lower photoresponse was attributed
was measured using the mercury cadmium telluride (MC . . .
the narrower depletion width at zero bias, and to less

detector of the FTIR microscope, which was calibrated bé/- . : L
. . fficient charge collection at the lower electric field. In these
a pyroelectric (DTGS) detector having flat response versls

wavelength. This procedure corrected the possible variati Lnction photodiodes, the photogenerated charge is collected

ns, .- . . . i
in instrument alignment and drift. The erfor was below Cgoth within the depletion region and within a diffusion length
meV, based on consecutive measurements of the same diod

of the depletion edge.
A commercial bulk Ge photodetector with known calibration

Photoresponsivity (Amps/Watt)

0.65 0.7 0.75 0.8 0.85
Photon Energy (eV)

e photoresponsivities of two samples with hole con-
~centrations near 18 cm™3 (SGC-103 and SGC-82) were
was measured as a reference for the absolute responsivity. . . : .
. . X : .SHifted to slightly lower energies relative to the more lightly
The commercial photodiode was a homojunction of Ge wit . )
3 —, doped samples. The explanation may be found in bandgap
an area of 8 10~2 cm?, and a dark current of 2610 o : . : .
renormalization, which decreases the absorption edge in semi-

.cm—2 i _
A-cm™" at a bias of-3 V. conductors, and to impurity band absorption [10]. The highly

Fig. 2 shows the photoresponsivity versus photon ener S .
for diodes with different alloy compositions and with hole%p(ad samples have a lower responsivity at all energies,

concentrations ranging from 10to 10 cm? (see Table 1). ?ttribrl:ted to their smaller depletion widths and diffusion
The diodes were biased at3 V. As seen, the responsivity engths.

values are respectable, considering that the GeC active layers

are relatively thin. The strong responsivity above 0.8 eV was

attributed to absorption by the direct energy valley of the . ANALYSIS AND DISCUSSION

alloy [9]. In comparison, the responsivity of a thick bulk Ge

photodiode followed the same energy dependence as that ofhe results of Fig. 2 were exploited to estimate the indirect
the Ge/Si diodes near the indirect bandgap of Bg £ 0.66 bandgap energy of the GeC absorbing layer of the photodiodes.
eV), reaching a maximum of 0.7 A/W at 0.8 eV and theRor diodes with an optical absorbing wid#f¥ that is less
slightly decreasing due to surface absorption. At energies nézan the absorption depth/« (the reciprocal of the optical
the fundamental bandgap of Ge, the onset of photorespoassorption coefficient), the photocurrent density is approxi-
regularly increased in energy with C concentration. A commately J,1, = ¢(1 — R)PaW/hv, whereg is the magnitude
parison of diodes having the same doping level yielded af the electron chargel? the surface optical reflectivityP
increase in the absorption energy 70 meV due to the the incident optical power density, aa the photon energy.
presence of 0.12 atomic % C. Since the GeC alloy layers wdter energy bands that are indirectknspace, the absorption
thick and nearly relaxed with similar residual strain, the shittoefficient follows the Macfarlane—Roberts expression [9],
in absorption energy was attributed to the alloying effect of ¢11] for single phonon emission and absorption, with energy
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dependence given by T

S
a=A (hU — E(J — Eph)2 (hU - Eg + Eph)2 °E’ 750+ i
= 1_6*Eph/kT eEph/kT_ 1 ~— . .

g R
o a

which holds for photon energies such that @ 700 1
w

—LCAO th
hv > Eg + Eph % v - Ge diodeeory

o 650 g9 . 3
'g S 10" cm

with phonon energy~,,;,, thermal energyl’, and whereA 8 10" em?®

is a constant. 600 10" em?

In principle, a plot of the square root of photocurrent
versushuv can yield two linear slopes that extrapolate to zero
absorption givingE,; = E,,. Due to the weak photocurrent ,
at energies near the bandgap, however, this procedure Ein3. The dependence of bandgap eneffy) on C faction and doping

. ianifi t A h . vel. The solid symbols give the doping concentrations measured by SIMS.
give signi '_Can error. AS a more compre enS'V_e apl?roa data points giveE, for the samples of Table I, obtained by fitting
we curve-fit the full Macfarlane-Roberts expression with th@e measured diode photocurrents to the Macfarlane—Roberts expression for
bandgap energy and the phonon energy as fitting parametglpgnon-assisted absorption. The variationsEip at particular C fractions
Th Its of the fits fo2 dE ted in Table | are not due to experimental uncertainty, but show the decrea#g, afith

€ results o e ItS T0E; an ph ar.e reporg in table 1. doping. For comparison purposes only, the solid line gives the theoréfjcal
The values obtained foF,, are consistent with the resultscalculated by the LCAO method using the virtual crystal approximation [13],
Of hlgh_resolutlon Optlcal absorptlon Studles In Ge Indlcatln ith a Slope of 25.7 meV per at. % C. For brevity, the d0p|ng concentrations

. . N ﬁed in the legend are approximate; the precise values are given in Table I.
that acoustic phonons are more strongly involved than optica
phonons [11].

The increase in the absorption edge with the addition obmposition may involve the differences in the behavior of
C is consistent with previous studies of Ge-rich alloys. Athe L energy band minima for Ge versus the minima for
increase of 63 meV per at. % C was previously obtainesi.
from optical transmission measurements of unstrained GeCThe Macfarlane—Roberts expression foaccurately fit the
alloys [4]-[6]. An increase of 43 meV per at. % C fordiode photoresponses for energies above the indirect bandgap
the E; critical point near thel. minimum was obtained by of Ge. The bandgap of diode SGC102 diode was in good
spectroscopic ellipsometry after correcting for strain [12hgreement with the commonly accepted value for Ge. The
Assuming a deformation potential of 10 eV [10], the variatiobandgap measured for the commercial Ge diode was in-
in strain between the samples would account for at mostb&tween that obtained for the Ge-Si diodes SGC102 and
meV of the observed bandgap differences. The reduction $&C103. Although the doping of the commercial Ge diode
the diode dark current by about a factor of 10 is consistewas not known, a possible reason for its bandgap could be
with the observed 70-meV increase in bandgap, because tihat it has a doping level in-between that of the two SGC Ge
leakage caused by recombination is proportional to the squdredes.
of the intrinsic carrier concentration?, which decreases ex-
ponentially with bandgap energy. It is also possible, however, IV. CONCLUSION

that the lower leakage is due to a reduction in the dislocation . .
. . X . . ___Insummary, the electrical and optical measurements showed
density by C-induced strain compensation. Fig. 3 summari £

the dependence of the bandgap on composition and dop) at Gg_,,C,—Si heterojunction photodiodes have a responsiv-

X o P hat is attractive for practical applications. The photodiodes
obtained from the curve fittings of the photoresponses. Th}é::e fabricated by heteroepitaxy using MBE at low temper-

reason for the initial strong increase in bandgap for small atures for compatibility with Si integrated circuit technology.

fractions is not clear, but may indicate a strong bowing in th : : ;
relation of bandgap to composition, or to the effects of carrie'&}IIOyIng with C increased the bandgap energy ohGgC,,

and was attributed to composition effects rather than to strain
transport on the photoresponse. .
compensation because the layers were nearly relaxed. The

Included in Fig. 3 is the result of theoretical calculations_ . . . .
. . ariable bandgap can be useful for tuning the desired operating
of £, reported previously [13] based on the virtual crysta ;
L . : - .Wavelengths of photodetectors and for reducing unwanted
approximation (VCA) using the linear combination of atomic. . e .

. : : : . Signals without sacrificing detector performance at important
orbitals (LCAO) method. This theory predicts an increasing®.. ' L

; : tical fiber communication wavelengths such as 1.55 and 1.3

bandgap with C fraction, although the VCA approach has th L )
Lo . . ! m. The reduction in dark current by adding C to Ge can
limitations of not accounting for strain localized about th . : . . .
) ; improve the signal-to-noise ratio of optical receivers.
C atom, nor to energy band broadening from alloy disorder

[14]. The theoretical curve was included for comparison; not

as a claim for the validity of the VCA approximation. For ACKNOWLEDGMENT
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