Carbon incorporation in Si$_{1-y}$C$_y$ alloys grown by molecular beam epitaxy using a single silicon–graphite source

M. W. Dashiel, a) L. V. Kulik, b) D. Hills, and J. Kolodzey
Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716

G. Watson
Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716

(Received 2 October 1997; accepted for publication 16 December 1997)

Pseudomorphic Si$_{1-y}$C$_y$ alloys on silicon (100) were grown by molecular beam epitaxy using a single effusion source of silicon contained in a graphite crucible, producing carbon concentrations of y = 0.008. The behavior of carbon incorporation using this source was studied as a function of growth temperature using x-ray diffraction and infrared spectroscopy, and was compared to previous studies, where Si$_{1-y}$C$_y$ was grown from separate silicon and graphite sources. An increased energy barrier for the surface diffusion of carbon was observed using the single silicon–graphite source. An infrared absorption mode near 725 cm$^{-1}$, observed for growth temperatures up to 700 °C, was attributed to a transitional phase between the loss of substitutional carbon and the formation of silicon carbide precipitates.

Copyright © 1998 American Institute of Physics.

Recently, the allying of C with Si and Si$_{1-y}$Ge$_y$ has attracted attention because of its ability to control the strain associated with the lattice mismatch to Si. Carbon in the Si$_{1-y}$C$_y$ and Si$_{1-y}$Ge$_y$ systems modifies the alloy band structure and the band offsets for Si based heterostructures. An increase of the substitutional C concentration in Si, by nearly four orders of magnitude more than the equilibrium solubility, has been predicted to arise from an enhanced surface solubility during epitaxial growth. This result has been demonstrated by molecular beam epitaxy (MBE), but only for a small “growth window” where conditions such as the substrate temperature and growth rate are optimal for substitutional C incorporation. The most common method of producing a C flux during MBE growth of Si$_{1-y}$C$_y$ is by sublimating high purity graphite in the presence of a Si flux. However, previous studies have shown that the evaporation of Si in a graphite container will yield a molecular beam predominantly of Si, Si$_2$C, and Si$_2$C$_2$ species due to the reaction between Si and graphite. Equivalent species were also obtained by the evaporation of SiC.

In this letter, we report the structural properties of MBE grown Si$_{1-y}$C$_y$ on (100) Si using a single effusion cell of silicon contained in a graphite crucible. The behavior of C incorporation in the lattice for different substrate growth temperatures was studied using infrared absorption spectroscopy and x-ray diffraction. The amount of substitutional C was observed to decrease with increasing substrate temperature. Infrared absorption showed that the loss of substitutional C is due to the formation of an intermediate Si–C phase and SiC precipitates. Compared to previous studies using separate Si and graphite sources, alloys grown with a single silicon–graphite source had an increased barrier to diffusion of C at the surface. We attributed this change to the difference in the C containing species of the molecular beam.

We grew 150 nm thick Si$_{1-y}$C$_y$ layers by MBE on the 2×1 reconstructed surface of Si (100) at substrate temperatures ranging from 400 to 750 °C, holding all other growth parameters constant. The MBE system was a model 620 manufactured by EPI Corporation, with a base pressure of less than 10$^{-11}$ Torr. Three in. diam float zone Si substrates were prepared by chemical degreasing and oxidation of the surface, followed by removal of the oxide in dilute hydrofluoric acid. Prior to growth, samples were heated to 200 °C for 45 min, then to 250 °C for 15 min, and finally the substrate was ramped to the growth temperature. Reflection high energy electron diffraction (RHEED) confirmed the 2×1 reconstruction of the Si surface prior to growth. X-ray diffraction was measured using a Philips Xpert-x-ray diffraction (XRD) diffractometer, using Cu $k\alpha_1$ and $k\alpha_2$ radiation. Infrared absorption was measured with a Nicolet-740 Fourier transform infrared spectrometer.

The silicon–graphite effusion source was constructed from a high-temperature effusion cell manufactured by EPI. High purity Si pieces were heated inside a pyrolytic graphite crucible to produce the reaction forming the molecular beam. This resulted in a growth rate of approximately 0.33 Å/min at an effusion cell temperature of 1400 °C. At this temperature, the graphite crucible itself will have negligible vapor pressure for any C containing species. Only the Si which reacted with the graphite crucible will have a significant vapor pressure, resulting in a molecular beam consisting of Si and C bonded with Si.

Figure 1 shows the x-ray diffraction and the infrared absorption spectra of Si$_{1-y}$C$_y$ layers grown by evaporation from the single silicon–graphite source. The Si$_{1-y}$C$_y$ alloy grown at 400 °C was amorphous, but was re-crystallized prior to both measurements by annealing at 750 °C for 20 min in N$_2$ gas, resulting in practically all C atoms occupying substitutional sites. For samples grown at higher tempera-

a)Electronic mail: dashiel@ee.udel.edu
b)On leave from the Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Moscow Region, Russia.
disappeared and the absorption peak at 810 cm

700 °C. At a growth temperature of 750 °C, the LVM of C
tutional C exists in the layers for growth temperatures up to
the layers were fully strained. X-ray diffraction and Raman
measurements indicated that C had transformed to a SiC precipitate phase. 11 For in-

radial mode

mediate growth temperatures

~$

$ intermediate Si–C phase with an absorption peak centered at 725 cm

growth temperature of 750 °C. At 750 °C, only the 810 cm

SiC peak remained. Our observation of the 725 cm

peak is consistent with a Si–C transitional phase, intermediate be-
tween the loss of substitutional C sites on the silicon lattice and the formation of SiC precipitates. The disordered nature
of this transitional phase is supported by the results of Kimura et al. 12 who observed an absorption peak near 725 cm

for Si implanted with C ions which existed for annealing temperatures up to 900 °C.

The behavior of C incorporation during MBE growth of Si$_{1-y}$C$_y$

alloys grown on

substrate temperatures of

\sim900 °C. The best fit to SiC precipitation, and an inter-

mediate Si–C phase with an absorption peak centered at 725 cm

The behavior of C incorporation during MBE growth of Si$_{1-y}$C$_y$

can be explained by the diffusion and formation of Si–C interstitial defects near the surface. 5 The number of C
atoms, n, on substitutional lattice sites can be modeled by:

$$n(T,r) = n_o(r,f)\exp\left(\frac{-ak}{4r}\right), \quad (1)$$

where n_o is the total C concentration, r is the silicon growth rate, f is the carbon flux, a is the Si lattice constant, T is the
growth temperature, and the exponential rate term

$$k = k_o \exp\left(-\Delta/k_BT\right) \quad (2)$$
describes the transfer of C from substitutional sites to inter-
tstitial Si–C defects at the surface. The activation energy is
designated by Δ and k_B is the Boltzmann constant. The term
$a/4r$ in Eq. (1) is the time for 1 monolayer of material to be
grown, after which C will be effectively "frozen in" the
lattice and thus subject only to bulk diffusion.

The top right inset of Fig. 1 displays the behavior of ln [ln(n_o/n)] vs 1/k$_BT$ for Si$_{1-y}$C$_y$
layers grown by the evaporation of Si in a graphite crucible, where the reference
n_o was taken to be the substitutional C concentration of the
layer grown at 400 °C after recrystallization. The best fit to this data gives the energy of formation of interstitials Si–C
defects of $\Delta = 1.0 \pm 0.2$ eV in the temperature range up to the
threshold for SiC precipitation. The growth of Si$_{1-y}$C$_y$
layers on (100) Si by the sublimation of graphite from a heated

FIG. 1. Infrared absorption spectra and (004) x-ray reflections for pseudo-
morphic Si$_{1-y}$C$_y$ alloys grown on (100) silicon for substrate temperatures of
400–750 °C. The inset plots the substitutional carbon concentration normalized
to the total carbon concentration vs the reciprocal growth temperature.

FIG. 2. The infrared absorption spectra of the as-grown amorphous Si$_{1-y}$C$_y$
alloy grown at 400 °C (dashed line) and crystalline Si$_{1-y}$C$_y$ grown at
650 °C (solid line). The alloy grown at 650 °C exhibits infrared peaks char-
acteristic of the LVM of carbon in silicon, SiC precipitation, and an inter-
mediate Si–C phase with an absorption peak centered at 725 cm

1. The infrared absorption spectra of the layer grown at 400 °C was measured prior
to recrystallization. Three distinct absorption features for the
Si$_{1-y}$C$_y$ layer grown at 650 °C are the 607 cm

characteristic of the LVM of carbon in silicon, SiC precipitation, and an inter-
mediate Si–C phase with an absorption peak centered at 725 cm

1. Figure 2 shows the infrared absorption spectra of Si$_{1-y}$C$_y$ alloys grown at 650 and 400 °C, where the infra-
red spectra of the layer grown at 400 °C was measured prior
to recrystallization. Three distinct absorption features for the
Si$_{1-y}$C$_y$ layer grown at 650 °C are the 607 cm

1 LVM of C, a small 810 cm

SiC precipitate peak, and the broad peak
near 725 cm

resembling that of the as-grown amorphous
Si$_{1-y}$C$_y$. The 725 cm

peak increased in intensity with
growth temperature up to 700 °C, but disappeared for a
filament separate from the pure silicon beam yields a smaller activation energy of $\Delta = 0.5 \text{ eV}$.5 The reason for the increased activation energy observed for $\text{Si}_{1-x}\text{C}_x$ grown from the single silicon–graphite source may be attributed to the chemical composition of the C containing species in the molecular beam. Evaporation from the single silicon–graphite source produces a molecular beam where the C containing molecular species is bonded to Si.6 In contrast, evaporation from pure graphite does not.9 We infer that the bonding of C to Si in the molecular beam tends to decrease surface diffusion of C, possibly by increasing the probability that the small C atom will be immediately buried under a Si atom. Once the C atom has been buried under 1 or more monolayers of Si, its position will be effectively “frozen in” and will be subject only to bulk diffusion.4,5 Substitutional C incorporation has been shown to depend on the gas source used during rapid thermal chemical vapor deposition (RTCVD) of $\text{Si}_{1-x}\text{Ge}_x\text{C}_y$.13 Mi et al. reported high substitutional carbon incorporation efficiencies at growth temperatures up to 600 °C using methylsilane (SiCH$_6$), where it was speculated that C may be incorporated into the lattice without breaking the preformed Si–C bond.

In summary, we have grown pseudomorphic $\text{Si}_{1-y}\text{C}_y$ layers with $y = 0.008$ by evaporation of Si in a graphite crucible at an effusion cell temperature of 1400 °C. Evaporation from the single silicon–graphite source results in an energy barrier to the formation of interstitial Si–C defects of $\Delta = 1.0\pm 0.2 \text{ eV}$ compared to the separate evaporation of graphite and silicon with $\Delta = 0.50 \text{ eV}$.5 An infrared absorption mode observed near 725 cm$^{-1}$ was attributed to a transitional Si–C phase intermediate between that of C diffusing from substitutional lattice sites to the formation of SiC precipitates.

The authors gratefully acknowledge support from ONR Grant No. N00014-93-1-0393 and DARPA Contract No. F49620-96-C-0006. They thank P. Thompson and M. Fatemi of the Naval Research Laboratory for the x-ray rocking curve measurements.