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Abstract—The microwave performance of high speed
InP /Iny 53Gay 4;As Heterojunction bipolar transistors is mea-
sured in the temperature range 55 K < 7T < 340 K. The ex-
trinsic unity currents gain cut-off frequency is f; = 130 GHz at
temperature T = 340 K increasing to f; = 300 GHz at T = 55
K. The intrinsic emitter-collector forward delay decreases with
decreasing temperature from 7, = 0.5 psat 7 = 340 K to a
saturated value of 75 = 0.28 ps for temperatures 7 < 150 K.
Such behavior may only be explained by the presence of non-
equilibrium electron transport in the base and collector of the
device.

I. INTRODUCTION

HE existence of extreme nonequilibrium electron

transport in abrupt A10.481n0.52AS/In0_53630'47AS and
InP /Iny 53Gag 4;As  heterojunction bipolar transistors
(HBTs) has been previously demonstrated by studying
static transistor characteristics [1]-[4]. For example, in
recent work it has been empirically established that ex-
treme nonequilibrium electron transport in the base of an
abrupt Alg 4gIng soAs /Ing 53Gag 47As HBT causes current
gain 3 to vary approximately as 1 /xp, where xj is the base
thickness [1]. This result contrasts with the 1/x% scaling
of base recombination limited current gain in conven-
tional bipolar transistors with diffusive charge transport in
the base. In addition, avalanche multiplication in the col-
lector of abrupt A10.481n0'52AS/In0.35Gao_47AS HBT’s is
found to depend on base width [3]. Apart from confirming
the existence of nonequilibrium base transport this illus-
trates the fact that base and collector transport are depen-
dent quantities. In this situation the intrinsic collector de-
lay 7¢ depends on the base transit delay 75 and, therefore,
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the relevant single physical quantity to be measured is the
intrinsic (i.e., without parasitic charging times) emitter-
collector delay 75. Of course, 7 is itself controlled by
electron dynamics in the base and collector, so knowledge
about electron scattering mechanisms leads to a more
complete understanding of device operation.

We have performed a comprehensive study of the high
frequency current gain h,; in the temperature range 55 K
< T < 340 K. Detailed device modeling was used to
extract 7 from the measured data. These results show that
intrinsic emitter-collector forward delay decreases from a
value of 7 = 0.5 ps at a temperature T = 340 K and
saturates at a value of 7 ~ 0.28 ps for, temperature T =
150 K and below. This marked decrease in measured for-
ward delay with decreasing temperature arises from the
temperature dependence of electron scattering in the de-
vice. The extrinsic current gain cutoff frequency, fr, of
these devices at a temperature of T = 55 K is greater than
300 GHz. Such a high value of fr may only be explained
by the existence of extreme nonequilibrium electron
transport in the base and collector. An average electron
velocity of around 4.5 X 107 cm s~ through the base and
8 x 10'7 cm s™! through the collector excludes the pos-
sibility that electron motion in these devices can be de-
scribed by conventional or drift-diffusive transport.

II. DEVICE DESIGN

Mesa transistors with an emitter area Ar = 3.5 X 3.5
um? were fabricated from crystals with the layer structure
shown in Table I. The ideality of the emitter-base junction
is n = 1.3 and that of the collector is n = 1.0. This fact
is reflected in the static transfer characteristics of the de-
vice. As may be seen in Fig. 1, the slope of the base and
collector currents with increasing Vpg are the same. An-
other point worth mentioning is that, because of the high
base doping p = 1 X 10%° ¢cm 3, the base sheet resistance
is low, Rz = 400 Q square™'. This low sheet resistance
is important as it allows some design flexibility. In par-
ticular, a wider emitter finger can be used without raising
the parasitic resistance. This relaxes the scaling limita-
tions and results in a small emitter area to collector area
ratio of 1/1.3.

In Fig. 2 we show a band diagram for a npn
InP /InGaAs HBT with a conduction band discontinuity
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Fig. 1. Static transfer characteristics of an abrupt InP/Ing s3Gag.47AS
n-p-n HBT. Device layer structure is the same as shown in Table 1. Ideality
factor for the emitter-base junction is n = 1.3 and n = 1.0 for the base-
collector junction. 4z = 2.7 X 1077 cm® and measurements were per-
formed at temperature 7 = 300 K.

InP
EMITTER

Ing 53Gag 47As
BASE

Ing 53Gag 47As
COLLECTOR

SUBCOLLECTOR
ni’

AE,

b—xg—f Xc %

Fig. 2. Schematic band diagram of an abrupt InP/Ings;Gag 4,AS
n-p-n HBT under base-emitter bias, Vgg, and collector emitter bias, Veg.
Conduction band off-set A E and valence band off-set A E), are indicated.

TABLE I
InP/InGaAs HBT LAYER STRUCTURE

Layer Material Doping (em™3) Thickness (A)
Cap n-InGaAs 7 x 10" 2000
Emitter n-InP 1 x 10'® 3000
Base p-InGaAs 1 x 10% 500
Collector n-InGaAs 2 x 10" 3000
Subcollector n-InGaAs 5 x 10 2500
Substrate S.1. InP

AE, = 0.26 eV and a valence band discontinuity AE},, =
0.34 eV [5]. The static (dc) common emitter current gain
B ~ 50 is limited by back injection of holes from the
heavily doped p = 1 x 10 cm™ base into the emitter
[5]. The abrupt heterojunction design allows both high
speed performance and adequate current gain.

The device operates by injecting electrons from the
emitter into the base with an excess kinetic energy of E
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~ 0.26 eV and initial velocity of around 1 x 108 cms™".

While traversing the base of thickness xp each electron
has a probability of inelastically or elastically scattering
by angle © and changing kinetic energy by hw. After tra-
versing the base a nonequilibrium distribution of electrons
encounters and accelerates in the electric field of the col-
lector. While in the collector electrons may experience
various scattering processes including polar-optic, inter-
valley, and electron-electron collisions. All of these
events contribute to the collector delay.

III. HicH-FREQUENCY RESULTS

Transistor scattering parameters were measured in the
frequency range 0.5 to 26.5 GHz using a HP8510B net-
work analyzer and Cascade Microtech high frequency
probes. These measurements were performed over the
temperature range 55 K < T =< 340 K by integrating the
high frequency probes into a vacuum chamber where ef-
fects due to moisture and changing temperature gradients
across the microwave hardware were eliminated [6]. An
accurate calibration procedure is achieved by measuring
short-open-load through calibration standards on a stan-
dard substrate with known impedance co-located with the
test device. Calibration integrity is verified at each tem-
perature by measuring the reflection coefficient from an
open circuit stub.

The surface temperature of the wafer stage is monitored
with a thermocouple attached to the sample substrate. The
actual device temperature is determined by measuring the
current-voltage characteristics of the collector-base diode
which has an ideality factor of n = 1.0. By controlling
the flow rate, pressure and temperature of nitrogen gas the
sample temperature may be varied from T = 150 to 340
K. For lower temperatures helium gas is used as the cool-
ant.

The forward current gain h,, derived from S-parameters
follows a —6 dB /octave roll-off and extrapolates to the
short circuit unity gain cutoff frequency, fr, at hy; = 0.
In Fig. 3 we show typical dependence of h,; with fre-
quency at a temperature T = 55 K, which extrapolates to
fr greater than 300 GHz. The total emitter—collector de-
lay time, 7gc is related to fy via

1
Ffr_ TEC

= TE + Tce + TF (1)
where 75 is the emitter charging time, 7¢c is the collector
charging time and 7 is the intrinsic forward delay. Con-
tributing to 7 is the base transit delay, 75 and the collec-
tor space charge delay 7¢. The intrinsic forward delay may
be accurately determined by equivalent circuit modeling.
After the on wafer calibration procedure, S-parameter data
at each temperature is recorded. The S-parameter data is
then used to construct the small-signal equivalent circuit
shown in Fig. 4(a) which represents the physical opera-
tion of the device. The pad capacitance Cp, and Cp, are
determined from the measured Y-parameters of an open
device as described in [7]. The emitter, base, and collec-
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Fig. 3. h,, as a function of frequency for an abrupt InP /In; 53Gag 47As n-
p-n HBT at temperature T = 55 K. The extrapolated cut-off frequency is
fr=300GHz. Veg = 1.2V, Ic = 15mA, and Az = 1.2 X 107 cm®.
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Fig. 4. (a) Equivalent circuit including parasitics. (b) Simplified equiva-
lent circuit.

tor inductances are calculated from the Z-parameters un-
der forward bias conditions for the emitter-base and base-
collector junctions, analogous to the technique outlined
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Fig. 5. S-parameters for an abrupt InP /In, 53Ga, 47As n-p-n HBT at tem-
perature T = 55K. Vg = 1.1V, I = 13 mA, and Az = 1.2 X 1077 cm?.
Both the measured and model data (fit to the small-signal equivalent circuit
in Fig. 4(a)) fall within the solid bold lines of the figure. R, represents
the radius of the Smith Charts used for each s-parameter.

for field-effect transistors in [8] and using the equations
derived for the ““T’’ type circuit model [9]. The values of
Cpy, Cpy, Lg, Ly, and L are verified by fitting the mea-
sured S-parameters using -the simplified model of Fig.
4(b).

The value for base resistance, Rp is determined by the
input impedance circle method [10]. The measured values
of s,; form a semi-circle on the complex impedance plane.
The value of Ry is the extrapolated point at which Sy,
crosses the real axis at high frequency. This is shown in
Fig. 5 where Rz ~ 49 Q at T = 55 K. The data form an
almost ideal semicircle indicating negligible inductance
effects. These extrapolated values of Ry agree well (within
5%) with the estimated values of Rp derived from dc mea-
surements on transmission line test patterns on the same
wafer. The value of C;, is calculated from the imaginary
component of the measured input reflection coefficient of
the device under zero bias conditions after removing the
effect of pad parasitics. The input reflection coefficient is
purely capacitive at low frequencies with no bias applied.
With Vg constant a value of Cj, is extracted from the
small-signal equivalent circuit at each Vpc bias point. We
can fit Cj,, to the relation

Com— @)
T = Vie/ V"2

where Vy; ~ 1V at T = 300 K. There is excellent agree-
ment between the two techniques and the typical values
for Cj, are 60 fF and 55 fF at T = 300K and T = 150
K, respectively. One critical point to be noted here is the
meaning of C,. C;, does not include the frequency depen-
dence of the so-called diffusion capacitance because of the
dominance of nonequilibrium transport in such a struc-
ture. The only other bias dependent terms are the dynamic
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Fig. 6. Plot of 1/2xfy vs. 1/l for an abrupt InP/Ing 53Gag.47As n-p-n
HBT at lattice temperatures of 300, 150, and 55 K with Vg = 1.1 V. The
slope of the linear fit for each temperature is proportional to the sum of the
junction capacitances and the y-intercept can be used to confirm 7. Using
this data the extracted value of 7 has been verified to within +10% as

shown in Fig. 7.

TABLE I
SMALL-SIGNAL PARAMETERS FOR A n-p-n InP /Ing 53Gag 47As HBT WITH 15 mA =< Io = 20mA, Vg =
1.2V, AND Az = 1.2 x 1077 cm ™2

Parameter T=5K T=150K T =240K T =300K T=340K
75 (PS) 0.27 0.28 0.38 0.45 0.50
Tec (PS) 0.50 0.88 1.06 1.18 1.24
o 0.98 0.98 0.97 0.97 0.97
C,. (fF) 200.1 233.9 227.2 225.6 205.7
C,. (fF) 9.1 13.3 13.9 14.3 12.8
Cy, (FF) 15.2 21.9 20.0 19.8 19.5
Ree () 5.1 9.2 8.3 8.7 8.1
Rgp () 1.6 2.03 1.73 1.23 1.12
Rz () 48.6 53.7 58.1 61.6 65.3
R (@) 2.3 4.33 3.41 3.68 3.37
R: () 0.29 0.47 1.14 1.32 1.61
Rep (k) 7.8 12.0 11.8 10.6 10.5

emitter resistance Ry and the complex common base cur-
rent gate, o. The small-signal elements Rgz, Rpp, and Rc
are determined from dc measurements and are relatively
insensitive to bias. Two methods are used as validity
checks for the accuracy of the extracted delay times: (1)
the small-signal element values are used to simulate the
measured S-parameters using the equivalent circuit and
(2) the values of 75 and junction capacitances are con-
firmed by plotting 1 /2xfr vs. 1/I¢ as shown in Fig. 6.
The small signal-elements Cpy, Cpy, Lg, Lg, Lc, Ree, Rg,
Rpp, and R are fixed and are bias independent. The ele-
ments &, C;, Cj,, and R are bias dependent and are com-
puted at each bias point. The small signal element extrac-
tion may also be constrained by (1) as described in [11].
Representative values of the small-signal circuit elements
are shown in Table II, with less than 10% relative error
between the measured and modeled s-parameters.

The data plotted in Fig. 6 confirm the extracted values
of 7 (y-intercept) and the slope is proportional to the sum
of C;,, C, and Cy,. We estimate that the values of 7 and
C;, are accurate to within + 10%, which is the relative
error between the data in Fig. 6 and values from small-
signal circuit simulations.

IV. DIsCUSSION

In Fig. 7 we show as a function of temperature, 7, the
values of 7 extrapolated from the measured S-parameter
data. The small signal data is that for an abrupt n-p-n
InP /Ing 53Gag 4;As HBT with emitter area Ax = 1.2 X
1077 cm? under bias Vo = 1.2 Vand Ic = 20 mA. Ata
temperature T = 340 K the forward delay is 7 = 0.50 +
0.05 ps. With decreasing temperature 7 becomes smaller
saturating at a value 7 ~ 0.28 £ 0.03 ps for 7 =< 150
K. As seen from Table 11, the dominant temperature de-
pendent elements, as determined by their effect on the de-
lay time, are 77, Rg, and Rp. Rg is proportional to the
temperature and Rj is controlled by carrier mobility in the
heavily doped base.

The observed temperature dependence of intrinsic for-
ward delay, 7p, is due to variation in electron scattering
with temperature and carrier density. This may be illus-
trated by considering the inelastic scattering rate, 1 / Tin»
for a central I'-valley conduction band electron of initial
kinetic energy E = 150 meV. In the neutral base electrons
may scatter elastically from statically screened ionized
p-type impurities or inelastically, changing kinetic energy
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Fig. 7. Values of 7r extracted from the measured S-parameter data and
result of numerically simulating small signal delay 75 and 75 as a function
of temperature, T. The device is an abrupt InP /Ing 5;Gag 4,As n-p-n HBT.
Emitter area is Az = 1.2 X 1077 cm?, and device layer structure is the
same as shown in Table I. The solid line in the figure is a least-squares fit
to the simulated data points.

by hw and changing momentum by ¢. Electron scattering
rates may be calculated within the random phase approx-
imation using a method outlined in [12] which relates the
electron self energy to the dielectric response of the semi-
conductor. Within this formalism, the dielectric response
function is

_ @i = vl
o+ i) = wlg§ TX@ D 3

(g, w) = €y {1
where €, is the high frequency dielectric constant, ¢ is
the scattered wave vector, Aw is the change in energy, w o
is the longitudinal optic phonon frequency, wrg is the
transverse optic phonon frequency, vy is a collision
broadening term, and x,.(¢, w) is the electron contribu-
tion. In this case the inelastic scattering rate, 1/7;,, is
calculated using

1 —87e? 1
— =2 I [
Tin K hq2 m e(g, w)

] (f(E — hw) + g(—hw))
@

where the Fermi function f(E) = (1 /exp [(E — w) /kgT]
+ 1), the Bose function g(E) = (1/exp [E/kzT] — 1),
p is the chemical potential and kg is Boltzmann’s con-
stant.

In Fig. 8 we show results using (3) and (4) to calculate
the coupled electron-electron/optical phonon scattering
rate in In, 53Gag 47As as a function of temperature for car-
rier densities n = 0 cm > and n = 1 x 107 cm™>. In both
cases optical phonon scattering is important, however, for
n =1 x 10" cm™ the electron-electron interaction is
appreciable, leading to a more rapid increase in 1 /7y, with
increasing temperature. For example, the total inelastic
scattering time for a conduction band electron in the pres-
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ence of n = 1 X 10"7 cm ™ other electrons is less than 50
fs at T = 300 K compared to 124 fs forn = 0 cm ™.

To obtain a more detailed understanding of the mech-
anisms determining the temperature dependence of 7, we
performed Monte-Carlo simulations similar to those de-
scribed in [13]-[15]. The electrons contributing to the
emitter current, I, are initially thermally distributed in
the conduction band of the wide band gap InP emitter and
are then injected with excess kinetic energy AE. = 0.26
eV into the conduction band of the p-type Ing 53Gag 47As
base. As discussed above, the relevant scattering rates
may be calculated using the appropriate dielectric re-
sponse function e(g, w) for p-type majority carriers [16],
[17]. The trajectories of electrons traversing the base are
calculated according to a standard semiclassical Monte-
Carlo procedure and current flowing across the base-col-
lector junction, Iyc, is calculated as a function of time.
Having traversed the base, electrons are accelerated in the
electric field of the reverse-biased collector space-charge
region. Here they may suffer inelastic collisions with pho-
nons and other electrons. Those electrons which gain
enough kinetic energy may also transfer from the I' to the
relatively low velocity L- and X-valley conduction band
minima. The inelastic scattering rate is larger than elastic
scattering in the collector space charge region. In the base
elastic and inelastic scattering rates are comparable.

Since current flow through the collector obeys Max-
well’s equations, we require V * (j,; + 8/8¢[D/4x]) =
0 where j,, is current density and D is electric displace-
ment field. The electric displacement field’s contribution
to current flow reduces the collector current delay by about
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a factor of two compared to the electron transit time across
the collector. In addition, high current density operation
o ~ 10° cm™3) and relatively low impurity concentra-
tion in the collector result in significant space-charge ef-
fects. It is, therefore, necessary to take into account band-
bending by satisfying Poisson’s equation in the base and
collector throughout the simulation.

In Fig. 9 we show typical results of calculating re-
sponse to current modulation between 12 mA and 15 mA
and response to current modulation between 0 and 12 mA
for a temperature T = 50 K. We expect Iy to be delayed
from I due to the base transit time and I¢ to be delayed
from Iy due to collector transit time and charging. Fig.
9(a) shows the input signal Iy and the collector current
output, Ic. Fig. 9(b) shows the input signal Iz, the current
Iyc, and the electron current I,;. We include I, in this
figure since the electron transit time across the collector
is not exactly 1/2 that of the collector current delay [18].
As may be seen, the response to large current modulation
cannot be characterized by a single time constant. The
factors contributing to this include the carrier density de-
pendence of electron scattering rates.

In Fig. 7 we show results of calculating the total small
signal delay, 7x as a function of temperature, T, for con-
ditions similar to those used in the experiments discussed
above (see Table III). Also shown in the figure is the small
signal base transit dely 75 as a function of temperature.
The agreement between experiment and theory is satis-
factory. The physics underlying the temperature depen-
dence of 7 is related to the temperature dependence of
1/7;, illustrated in Fig. 8. At low tempertures (T = 50
K) the base transit delay 75 ~ 0.11 ps is about one third
of the total forward delay 7 ~ 0.30 ps. The average elec-
tron velocity in the base is vz = 4.5 X 10’ cm's™' and in
the collector it is vc ~ 8 x 10" cm s~!. At room tem-
perature (T = 300 K) 75 ~ 0.19 ps is almost half the total
delay 7 ~ 0.43 ps. In this case v52.6 X 10’ cm s™' and
ve ~ 6 X 107 cm™!. The high average electron velocity
in the base arises from nonequilibrium electron transport.
A diffusive transport model cannot be justified as it would
imply an unreasonably high value for minority carrier mo-
bility of (T = 50 K) = 2.7 X 10* cm®* V™' s™" and w(T
=300K) = 2.5 x 10° cm® V™! 57! for an Ing 53Gag 47AS
p-type majority carrier concentration of p = 1 X 10%°
cm™>. In addition, attempts to fit the electron distribution
function to an effective electron temperature, 7,, greater
than the lattice temperature fail. It is therefore inappro-
priate to introduce an *‘effective diffusion constant.’”

The above discussion of 75 refers to a collector-base
bias voltage of Vg ~ 0.3 V. In this situation base trans-
port is more temperature sensitive than collector trans-
port. The relative temperature dependent contributions of
I’-L and T'-X scattering do not dominate. At larger reverse
bias, e.g., Vcg = 1 V, more electrons scatter into the X
and L valleys and the relative importance of the temper-
ature dependence of phonon and electron-electron scat-
tering in these valleys increases. Fig. 10 shows how this
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Fig. 9. Result of numerically simulating the step response of an abrupt
InP/Ing 5;Gag 47As n-p-n HBT at temperature 7 = 55 K. Emitter area A
= 1.2 x 10”7 cm? and device layer structure is the same as shown in Table
I (a) shows emitter current I and collector current /¢ as a function of time
t. (b) shows emitter current I and base current Igc flowing across the base/
collector junction and electron current, I,,, at the collector as a function of
time, ¢.

TABLE I
CALCULATED SMALL-SIGNAL DELAY FOR A n-p-n InP /Ing 53Gag 47As HBT
WITH Ic = 15 mA, Veg = 1.2V, AND A = 1.2 X 1077 cm™?

Temperature (K) 7 (PS) 75 (PS)

5 0.28 0.11

50 0.30 0.11

100 0.31 0.12

200 0.36 0.12

250 0.38 0.13

300 0.43 0.19

350 0.50 0.24

manifests itself as an enhanced temperature sensitivity of
7r with increasing temperature and increasing Vcg. At val-
ues of Veg = 0.2 V the temperature sensitive collector
diffusive capacitance causes the experimentally deter-
mined 7 to increase.
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Fig. 10. Small signal forward delay, 7, extracted from measured s-param-
eter measurements for various collector-base biases, Vg and various tem-
peratures, T. The device is an abrupt InP /, 5,Ga, 4,As n-p-n HBT. 15 mA
< I¢ < 20 mA, 4z = 1.2 x 1077 cm?, and device layer structure is the
same as shown in Table I. The solid line in the figure is to guide the eye.

V. CONCLUSIONS

In summary, the microwave performance of abrupt
InP /Ing 53Gag 47As n-p-n HBTs has been measured in the
temperature range 55 K < T < 340 K. Our devices have
a base thickness xz = 500 A and a high base doping level
p =1 X 10%° cm™3. The minimum intrinsic small signal
emitter-collector forward delay decreases from 7 = 0.5
ps at T = 340 K to a saturated value of 7 ~ 0.28 ps for
T = 150 K due to a saturation in the inelastic scattering
rate. Numerical simulations using the Monte-Carlo tech-
nique have been used to model transistor behavior. It is
shown that the temperature dependence of electron scat-
tering is responsible for the observed temperture depen-
dence of 7r. In addition, for T < 340 K, the high speed
performance of our abrupt InP /Ing 53Gag 47As HBT’s may
only be explained by the presence of nonequilibrium elec-
tron transport in the base and collector.
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