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Abstract—Microwave and dc properties of 0.5-um InGaAs
MESFET’s were measured at 300 and 125 K. We have measured
approximately 30% increases in RF g, ., and f; when cool-
ing from 300 to 125 K. We also observe a 0.06-V increase in gate
built-in voltage at 125 K that results in smaller gate leakage
currents. The improved gate characteristic at 125 K leads to
better RF properties at higher gate bias.

I. INTRODUCTION

ECENTLY, metal-semiconductor field-effect transistors

(MESFET’s) have become more important for practical
applications in VLSI circuits and communications. The re-
ported high-frequency performance of MESFET’s now rivals
the best results achieved with modulation-doped field-effect
transistors (MODFET’s) [1]. It is well known that the veloc-
ity-field characteristic of the channel material is an important
factor which determines the high-speed performance of
field-effect transistors.

The velocity-field characteristic of InGaAs has a higher
peak electron velocity than GaAs, which improves high-speed
device performance [2]. The InGaAs MESFET has demon-
strated impressive 60-GHz power performance, as reported
previously [3].

In this paper, the first study of the high-speed performance
of InGaAs MESFET’s at cryogenic temperatures is pre-
sented. We have studied the temperature dependence of dc
and microwave device parameters from 300 to 125 K. Our
data indicate that improved performance at cryogenic temper-
atures is due to an increase in the effective saturation velocity
in the channel.

II. DEVICE STRUCTURE AND FABRICATION

The devices are fabricated on (100) GaAs substrates. An
In,Ga,_,As layer is grown using an EMCORE GS3300
MOCVD reactor, and the InAs concentration is graded from
18% at the substrate to 0% at the surface. These graded
devices show superior Schottky gate characteristics compared
to nongraded structures. Total channel thickness is 1600 A.
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The graded In Ga,_,As layers are doped by silicon ion
implantation, at 80 keV with dose of 6.5 X 102 em~2.

Recessed gate devices (0.5 pm X 100 pm) were patterned
using standard MESFET processing techniques. Details of
fabrication have been reported previously [4].

III. VARIABLE TEMPERATURE DC PERFORMANCE

The I-V characteristics of the InGaAs MESFET demon-
strate stable low-temperature behavior, as shown in Fig. 1.
Device threshold voltage V' increased from —1.62 V at 300
K to — 1.35 V at 125 K, and showed an approximately linear
dependence with temperature. The threshold voltage in MES-
FET devices has several temperature-dependent terms, in-
cluding the Schottky barrier built-in voltage, the channel-to-
substrate built-in voltage, and the charge density variation in
the channel due to piezoelectric and deep-level transient
effects [5). For V, > —0.25 V, there is more drain current
at 125 K due to a higher effective electron velocity in the
channel. The positive shift in ¥ results in smaller channel
currents at 125 K for ¥, < —0.25 V.

The gate turn-on voltage, defined as the gate voltage
resulting in 1 mA of gate current, increases from 0.54 V at
300 K to 0.63 V at 125 K. In Fig. 2, the gate current is
plotted as a function of gate voltage at 300 and 125 K. The
onset of gate conduction is clearly shifted to higher gate
voltages at lower temperature. The gate built-in voltage V;
was measured from CV data, and increased from 0.70 to
0.76 V when cooling from 300 to 125 K. The increase in
built-in voltage is consistent with the change in the gate diode
characteristic.

Extrinsic values of dc g,, were also computed by sweep-
ing the gate voltage with a drain bias of 2.0 V. The maxi-
mum dc g, was 435 mS/mm at 300 K and 517 mS/mm at
125 K.

IV. VARIABLE TEMPERATURE MICROWAVE
PERFORMANCE

S-parameter data were collected from 0.5 to 26.5 GHz
using a Hewlett-Packard 8510B network analyzer. Measure-
ments at 300 K were performed using a Cascade model 42 D
high-frequency probe station, and 125-K measurements were
made using a custom-built cryogenic high-frequency probe
station [6]. Calibration with an impedance standard substrate
from Cascade Microtech was performed and verified at 300
and 125 K by measuring the response of an open-circuited
coplanar stub.

The measured S parameters were converted to ¥ parame-
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Fig. 1. Drain current [, versus drain-source voltage V,; and gate-source

voltage V. At 125 K characteristics spread apart, indicating higher g,,.
Threshold voltage V7 is less negative at 125 K.
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Fig. 2. Gate leakage current I, versus gate-source voltage V., showing
larger gate built-in voltage at 125 K.

ters, and Y parameters were used to compute fr (fr =
Emjext [2TCy), where g, is the extrinsic transconduc-
tance and C,; is the gate-to-source capacitance [71. In Fig. 3
the calculated f; values for InGaAs 0.5-um MESFET’s are
plotted versus V,, at 300 and 125 K. The calculated f7
values agree well with those determined by extrapolating the
measured |h,,| curve to unity current gain, based on a
6-dB /octave rolloff. It is important to note that when the
temperature is reduced from 300 to 125 K, the fr improves
over the entire bias range (V,, = —1.0 to 0.6 V), although
the dc channel current at 125 K is greater only for V, >
—0.25 V. Peak f, improves from 37 GHz at 300 K to 43
GHz at 125 K. However, the largest percentage change in fr
occurs at V, = 0.42 V, where fr increases from 31 to 40
GHz, a 29% improvement.

The small-signal parameters that mainly determine f7 are
&mex and Cy,. Fig. 4 shows g, versus V,s as computed
from the Y parameters at 300 and 125 K. At Vgs =042V,
&m|exe improves by 32%, which corresponds to the change in
J7- The maximum RF g, ., at 300 K was 430 mS/mm at
Vs = 0.50 V, and improved to 580 mS/mm at 125 K, with
Vs = 0.57 V. At 300 K, the g, ., decreases due to gate
conduction at V, = 0.57 V, while the g, at 125 K
increases out to V. = 0.57 V due to smaller gate leakage.

The small-signal element that reflects the improved high-
speed device operation at cryogenic temperature i &, ecx-
Parasitic elements were not found to change significantly
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Current gain cutoff frequency fr versus gate-source voltage V,,
showing higher frequency operation at 125 K.
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Fig. 4. Extrinsic transconductance g,,|.. Versus gate-source voltage Vg
showing higher modulation efficiency at 125 K. At 125 K, the peak g, cx
occurs at a higher V, value. Improvement in g, ., is larger at higher {/gs
values.

with temperature. Source resistance, related to the on resis-
tance in the linear region of the /- ¥ characteristic, does not
change significantly with temperature as is clear in Fig. 1.

The improvement in g, at 125 K is larger at higher
gate bias. As the gate bias increases, the degradation of
&m|ex: due to gate leakage is more severe. The smaller gate
leakage at 125 K causes the g, to improve more at higher
gate bias. This in turn leads to a higher f; over a wider bias
range.

The average electron drift velocity is directly related to
Sr, since v, =2nfrL,. At V, =042V, the v,,, com-
puted from f, increases from 9.74 x 10° cm/s to 1.26 X
107 cm/s. A similar percentage increase in velocity is ob-
served in the doped-channel metal-insulator-semiconductor
field effect transistor (MISFET) [8]. This implies that the
high-speed transport mechanisms are similar in the MESFET
and the MISFET.

V. CONCLUSIONS

From the above data we can draw several conclusions.
First, the 32% improvement in RF &mlext (and similar
improvement in f;) indicates a higher average saturation
velocity (V,,.) as the temperature is reduced. Low-tempera-
ture operation reduces scattering due to lattice vibrations,
leading to a higher average electron velocity in the channel.

The built-in voltage of the Schottky gate increases at low
temperature, causing a higher gate turn-on voltage and smaller
gate leakage currents. This causes a shifting behavior in the
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bias dependence of f7 and g, ., and leads to a higher f;
over a wider bias range.
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