ELEG 646; ELEG 446 - Nanoelectronic Device Principles – Spring 2005 Homework #4 - due Tuesday, 22 March 2005, in class

1.

A 0.5- μ m thick sample of GaAs at 300 K has an area of 1 cm². The sample is uniformly illuminated with monochromatic light of hv = 2.1 eV. The absorption coefficient α at this wave length is 4×10^4 cm⁻¹. The power incident on the sample is 12 mW. (a) Calculate the power absorbed by the sample; (b) determine how much power is dissipated by the excess electrons to the lattice before recombining; and (c) determine the number of photons per sec falling on the sample and the number of photons per sec emitted from the electron-hole pair recombination.

2. Let the sample in Prob. 1 (above) be n-type with $n_o = 10^{16} \text{ cm}^{-3}$. (a) Assuming that each of the absorbed photons produce one electron-hole pair in the sample, calculate the excess electron and hole concentrations in the steady state. (b) Calculate the photoconductivity (see problem 3 below) of the sample and determine whether it is the case of low- or high-level injection. Use the data from Table 1.3 for GaAs.

3.

A homogeneous semiconductor bar is illuminated uniformly by a penetrating light that generates electron-hole pairs at a constant rate $G_L \text{ cm}^{-3} \text{ sec}^{-1}$. Assuming low-level injection, (a) calculate the excess carrier concentration as a function of time if the light is switched on at t = 0; and (b) determine the steady state values of electron and hole concentrations and show that the photo conductivity $\Delta \sigma$ of the sample is given by $\Delta \sigma = q(\mu_n + \mu_p)G_L\tau_p$.

4.

For a semiconductor with indirect recombination characterized by a single trap level at E_i and $\tau_{po} = \tau_{no}$, show that under low-level injection the maximum possible lifetime occurs when E_F lies at E_i , and that this maximum is given by

$$au_p = au_{po} \Biggl[1 + \cosh \Biggl(rac{E_t - E_i}{kT} \Biggr) \Biggr]$$

5.

Excess carriers are injected in a region of a uniformly doped *n*-type semiconductor with $n_o = 10^{14}$ cm⁻³. The excess carrier concentration is maintained at 2×10^{18} cm⁻³ throughout the region. (a) Calculate the Auger recombination lifetime assuming $C_n = 2.7 \times 10^{-31}$ cm⁶ sec⁻¹ and $C_p =$ 1.1×10^{-31} cm⁶ sec⁻¹. (b) If the measured lifetime in the above sample is 4×10^{-7} sec, determine the lifetime in the absence of Auger recombination.

http://www.ece.udel.edu/~kolodzey/courses/eleg646s05.html

Note: On each homework and report submission, you must please give your name, the due date, assignment number and the course number.

Homework assignments will appear on the web at: