ELEG 340 - Fall 08
Solid-State Electronics
Quiz 2

9 October 2008

NAME: Solution

Time Limit: 30 minutes

Closed Books and Notes. You may use your own calculator, but you may not loan or borrow calculators (ask proctor if you have questions). Put expression in a final form as best you can, and indicate final units (dimensions).

Guidelines:
I. Full credit requires giving the final dimensions/units for all numerical quantities that you calculate.

II. Show all work and calculations for full credit.

III. Accuracy to 2 significant figures is sufficient.

IV. Assume that the material is silicon at room temperature (300 K or 296 K), unless otherwise stated.

V. At room temperature (300K), thermal energy $k_B T = 0.0258$ eV (0.026 eV), silicon has intrinsic concentration $n_i = 1 \text{ (or 1.5) } \times 10^{10} \text{ cm}^{-3}$. and recombination lifetimes: $\tau_n, \tau_p = 1 \mu\text{sec}.$

Note permittivity of free space $\varepsilon_0 = 8.85 \times 10^{-14} \text{ F/cm};$ magnitude of electron charge $q = 1.6 \times 10^{-19} \text{ Coul}$

VI. Equations:

$p_{op} = i \hbar d/dx$

$n = n_i \exp[(E_F - E_i)/k_B T].$

$J_n = q \mu_n n \varepsilon + q D_n \partial n/\partial x$

$U_n = (n_p - n_{po})/\tau_n$

$C = \varepsilon_0 / W$

$D/\mu = k_B T/q$

$\partial p/\partial t = -1/q \partial J_p/\partial x - p'/\tau_p$

$\partial p/\partial t = D_p \partial^2 p/\partial x^2 - p'/\tau_p$

$p' = p - p_0 = g_{opt} \tau_p$

$f_{FD}(E) = 1/[1 + \exp(E - E_F)/k_B T]$

$p = n_i \exp[(E_F - E)/k_B T]$

$J_p = q \mu_p p \varepsilon - q D_p \partial p/\partial x$

$U_p = (p_n - p_{po})/\tau_p$

$L = \sqrt{(D \tau)}$

$E = Q V$

$\partial n/\partial t = -1/q \partial J_n/\partial x - n'/\tau_n$

$\partial n/\partial t = D_n \partial^2 n/\partial x^2 - n'/\tau_n$

$n' = n - n_0 = g_{opt} \tau_n$
1. An electron has a kinetic energy of 2 eV (electron volt). What is its energy in Joules? For full credit, show your work.

\[W = qV = 1.6 \times 10^{-19} \text{Coul} \times 2 \text{V} \]

\[2 \text{eV} = 3.2 \times 10^{-19} \text{Joule} \]

2. A sample of silicon at room temperature (300K) is uniformly doped with acceptors to a concentration \(N_A = 10^{18} \text{cm}^{-3} \). What is the concentration of holes in the valence band?

\[P = N_A = 10^{18} \text{cm}^{-3} \]

3. The silicon in the question above is now compensation doped with donors \(N_D = 2 \times 10^{17} \text{cm}^{-3} \). What is the new concentration of holes?

\[P = N_A - N_D = 10^{18} \text{cm}^{-3} - 2 \times 10^{17} \text{cm}^{-3} \]

\[= 8 \times 10^{17} \text{cm}^{-3} \]
4. A wafer of silicon at $T = 300$ K has a free electron concentration of $n = 1 \times 10^{17}$ cm$^{-3}$. What is the hole concentration?

$$p = \frac{n^2}{n} = \frac{10^{20} \text{ cm}^{-6}}{10^{17} \text{ cm}^{-3}} = 10^3 \text{ cm}^{-3}$$

5. For the silicon above, calculate the energy of the Fermi level, E_F relative to the intrinsic level, E_i.

$$n = 10^{17} \text{ cm}^{-3} = n_i \left(\frac{E_F - E_i}{kT} \right)$$

$$E_F - E_i = \frac{kT \ln \frac{10^{17}}{10^{10}}}{10^{10}} = 0.026 \ln 10^{7}$$

$$= 0.26 \times 1.61 = 0.26 + 0.15$$

$$\approx 0.41 \text{ eV}$$

6. A sample of GaAs is n-type doped with $N_D = 1 \times 10^{16}$ cm$^{-3}$. The electron mobility is $\mu_n = 8500$ cm2/V-s. Calculate the electrical conductivity, σ.

$$\sigma = n \mu = 10^{16} \text{ cm}^{-3} \times 1.6 \times 10^{-19} \text{C} \times 8.5 \times 10^3 \text{ cm}^2/\text{V-s}$$

$$= 8.5 \times 10^9 \text{ S/cm}$$

$$\sigma = 14 \text{ S/cm}$$
7. A piece of silicon at room temperature (300K) is doped with donors to \(N_D = 10^{17} \text{ cm}^{-3} \). The sample is uniformly illuminated with a generation rate of EHPs: \(g_{\text{opt}} = 10^{22} \text{ cm}^{-3} \text{s}^{-1} \). (a) what is the excess carrier concentration \(p' \) (or \(n' \))? (b) what is the total concentration of electrons? (c) what is the total concentration of holes?

a) \(n' = p' = g_{\text{opt}} t n = 10^{22} \text{ cm}^{-3} \text{s}^{-1} \times 10^{-6} \text{ sec} = 10^{16} \text{ cm}^{-3} \)

b) \(n = n_o + n' = N_D + n' = 10^{17} \text{ cm}^{-3} + 10^{16} \text{ cm}^{-3} = 1.1 \times 10^{17} \text{ cm}^{-3} \)

c) \(p_o = \frac{n'}{N_D} = \frac{10^{22} \text{ cm}^{-6}}{10^{17}} = 10^3 \text{ cm}^{-3} \)

\(p = p_o + p' = 10^3 \text{ cm}^{-3} + 10^{16} \text{ cm}^{-3} = 10^{16} \text{ cm}^{-3} \)