ELEG 340: Solid-State Electronics, Fall 2008

Homework \#7 (rev.) - due Wednesday, 5 November 2008, noon in ECE Dept. Office, 140 Evans

1. Problem 5.16, p. 244 of Streetman-Banerjee, $6^{\text {th }}$ edition. Hints: using the text's hints about the relative magnitudes of φ_{bi} and $\mathrm{V}_{\mathrm{rev}}$, you can calculate the depletion width with acceptable accuracy (2 significant figures are fine), so you really do not need to know the precise value of N_{D}. The electric field at the junction is just the result of our triangular integration as in class. The field far from the junction in forward bias refers to the so-called neutral region, and is trickier, but sensible. Keep in mind that Ohm's Law will apply here for the majority carriers, with no diffusion for them, and use this equation for the total current to get \mathcal{E}.
2. Problem 5.19, p. 244 of Streetman-Banerjee, $6^{\text {th }}$ edition.
3. Problem 5.20; calculate depletion capacitance only in reverse bias; p. 244 of Streetman-Banerjee, $6^{\text {th }}$ edition.
4. Problem 5.22, p. 245 of Streetman-Banerjee, $6^{\text {th }}$ edition. Hint: in thermal equilibrium, E_{F} is constant and E_{i} is midgap; you may find $\left(E_{i}-E_{F}\right)$ by assuming that $p=N_{A}$ far from the junction and by using the standard formula for p versus n_{i}. As the text suggests, you may draw just a smooth curve for E_{C} and E_{V} near the junction, because there is no positive "depletion charge" on the more lightly doped p-side of the junction (since there are no $\mathrm{N}_{\mathrm{D}}{ }^{+}$donors in a p-type sample, what positive charge is there do you suppose?) and the exact details are advanced.
5. Problem 5.24, p. 245 of Streetman-Banerjee, $6^{\text {th }}$ edition. Hints: just use ratios of capacitance, and assume that $\varphi_{b i}$ is negligible compared to $\mathrm{V}_{\text {rev }}$.
6. Problem 5.40 (a) only; p. 326 of Streetman-Banerjee, $6^{\text {th }}$ edition. Hint: obtain $\mathrm{E}_{\mathrm{C}}-\mathrm{E}_{\mathrm{F}}$ from the doping, and use the electron affinity to find the work function of silicon with this doping.
7. Problem 8.8; p. 433 of Streetman-Banerjee, $6^{\text {th }}$ edition.

Homework assignments will appear on the web at:
http://www.ece.udel.edu/~kolodzey/courses/eleg340f08.html

Note: On each homework and report submission, please give your name, the due date, assignment number and the course number.

