
Detecting P2P Traffic from the P2P Flow Graph

Jonghyun Kim
Electrical and Computer Engineering

University of Delaware

Newark, USA

Email: jonghyunl@udel.edu

Khushboo Shah
Electrical and Computer Engineering

University of Delaware

Newark, USA

Email: Khushboo.H.Shah@gmail.com

Stephan Bohacek
Electrical and Computer Engineering

University of Delaware

Newark, USA

Email: bohacek@udel.edu

Abstract—Accurate identification of P2P (peer-to-peer) ap-
plications’ flows is important for network capacity planning,
provisioning, application traffic engineering, network service
pricing, traffic shaping/policing, and flow prioritization. To this
end, many identification methods have been developed based on
the transport layer port, analysis of packet payloads, statistical
observation on flows and graph-based structural properties. One
deficiency of those methods is that they concentrate only on
a decision of whether a single flow is P2P flow or not. This
paper presents methods for detecting P2P flows by constructing
a graph where each flow is a vertex. Edges are constructed by
applying various rules that consider the ports used by previously
detected P2P flows. In this graph, we find that around 90%
of the P2P flows are within a large connected component.
The remaining 10% is composed of many smaller connected
components. Edges between the large connected component and
these other components can be constructed with some heuristics.
The methods proposed are tested on traffic traces that included
signature matching, so that we are able to ensure that significant
P2P applications are detected.

Index Terms—Application identification, P2P, flow graph.

I. INTRODUCTION

Detecting P2P traffic is important for a range of network

management activities. For example, since web surfers places

a high priority on file transfer time [1] and P2P users do not, a

larger number of P2P users could drive the network to a state

where web surfers experience poor performance. Therefore, if

P2P flows can be identified, network administrators might limit

network resources provided to P2P during times of congestion.

Also, in some settings P2P applications are security risk. For

example, P2P networks can be used to distribute copy-righted

and confidential material. Botnets [2] are also known to make

use of P2P networks. Therefore, some network administrators

might desire to detect P2P users. And finally, network planning

will be improved if the applications used by network users are

known.

While detecting P2P traffic is desirable, because of en-

cryption and evolving protocols, identifying P2P flows is

challenging. Nonetheless, a range of techniques is available

for consideration. For example, the TCP and UDP ports of

many P2P system are known, and hence some P2P flows

can be detected by simply examining the ports. Sophisticated

firewalls can detect P2P by examining byte strings signatures

[3], [4]. And finally, the behavior of P2P is known, and hence

schemes can be developed to detect this type of behavior. It

is important to point out that schemes that use byte string

signatures require expensive deep packet inspection (DPI)

equipment. One important finding of this paper is that P2P

can be detected by considering a graph of flows between

multiple users. Specifically, we find effective iterative methods

that discover new P2P flows based on previously found P2P

flows. Insight into the proposed approach is provided by

modeling P2P flow detection as traversing a graph where flows

are vertices and the detection methods define edges between

flows. Among other findings, we find that most P2P flows

are within the same large connected component of this graph.

Consequently, it is straightforward to find one flow in this

connected component, and then all flow in the component

can be found. Flows in other components can also be found

by linking different components together with a different P2P

detection algorithm.

The behavior-based detection [5], [6], [7] has previously

been applied to P2P detection. For example, [5] introduced

flow-based heuristic methods. TCP/UDP pairs method tags

flows generated by two hosts that use both TCP and UDP

protocols for their communication. However, in order to limit

the number of false positives, the user must develop a white

list of applications that behave as servers. Unfortunately, this

list is expansive, and we found that the list provided in [5]

resulted in a large number of false positives.

Researchers have developed more computational complex

methods including methods that employ clustering algorithms

[8], machine learning [9], [10], and traffic profiling [11],

relying on statistical observations of more detailed information

in a flow (e.g., total packet size, total number of packets, flow

duration, average inter-arrival time between packets, size of the

first data packet, etc.) or on graph-based structural properties

[12].

[13] showed transport-layer interactions (social behaviors)

for representative applications visually. In their classification,

they ignored port numbers, which cannot be relied on to detect

all P2P flows, but can assist in detecting P2P flows. For

example, if you know that a host’s P2P application listens on a

specific port, then incoming flows to that port are likely to be

P2P flows. Another drawback of [13] is that it has difficulties

when a host runs multiple applications simultaneously. [14],

[15] showed that the graphs (TDGs or TAGs) constructed

by P2P applications have the property of one large giant978-1-4244-9538-2/11/$26.00 c© 2010 IEEE

connected component (GCC) that can be quickly formed

with relatively small number of connected components that

are formed based on different P2P ports, each component

consisting of hosts and edges (an edge between two hosts

exists if P2P communication between them has occurred). This

gives us an insight that tracing a confirmed P2P port may result

in finding the GCC as well as P2P flows readily. Our graph

analysis here is different from [14], [15] in that the vertex is

a P2P flow and its traced P2P flows. As far as we know, this

paper is the first to address P2P flow-tracing graph analysis.

The paper is organized as follows. Section II discussed

the flow data and presents mathematical definitions used

throughout the paper. Section III explains our set of detection

methods. Section IV discusses the performance of the detec-

tion methods. To gain further insight into the performance,

Section V develops and investigates a graph model of P2P

flow detection. Finally, Section VI presents our conclusions.

II. FLOW DATA

Network flows are obtained by the monitoring machine

located between dormitory networks of a university and ex-

ternal networks in the spring of 2008. In total, 206 millions

of TCP and UDP flows were collected from 3161 users.

Flow information consists of source IP, destination IP, source

port, destination port, transport protocol, flow start time, and

event ID, which we denote by SIP, DIP, SP, DP, PR, ST,

and EID, respectively. For TCP flows, SIP is the IP of the

host that sends the first SYN packet. Similarly, for UDP

flows, the SIP is the source IP in the first packet observed

from the stream of UDP packets exchanged between two

hosts. Unidirectional flows were removed from the data set.

Because of the network topology, all traffic to and from a

host within the dormitories passed through our monitor. EID

indicates whether the payload of the packet matches the P2P

byte-string signature. This identification was performed with

byte signatures similar to those available online [16]. While

this signature approach has a low false alarm probability, it

has a high false negative probability, as we had signatures

from only a limited number of P2P protocols. Specifically, we

were able to detect BitTorrent, Gnutella, and FastTrack/Kazaa

applications.

We represent a flow as a tuple of (SIP, DIP, SP, DP, PR,

ST). Thus, a flow φ has components φSIP , φDIP , φSP , φDP ,

φPR, and φST . Sets of flows are denoted by capital letters. For

example, Φ = {φ|φPR = tcp,φDP = 80} is the set of flows,

which use TCP and have destination port 80, extracted from

all flows.

III. IDENTIFICATION METHODS

A. Overview of methods

Two classes of methods are utilized. The first class of

methods identifies some initial P2P flows (i.e., flows between

two instances of a P2P application). The second class of

methods uses these initial flows to detect more P2P flows.

This second class of methods is applied iteratively. Given a

set of P2P flows, these methods detect other P2P flows. With

these new P2P flows found, the methods can be reapplied,

discovering more flows. Hence, these methods are iteratively

applied until convergence. These second set of methods give

rise to an graphical representation of P2P flows, which will be

further discussed in Section V. In the next two sections two

methods are provided to find an initial set of P2P flows. Then,

sections III-D-III-F present three methods that can be used

iteratively to discover P2P flows. Section III-G summarizes

the methods.

B. Degree-Based P2P Detection

One of the hallmarks for P2P file sharing is that a single file

is downloaded by downloading different pieces from multiple

hosts. Thus, one end-host usually connects to multiple peers

simultaneously and often many peers will connect to a single

host. We define the out-degree to be the number of hosts that

a host connects to and the in-degree to be the number of hosts

that connect to a host.

Out-degree can be determined as follows. Suppose that a

host with address IP initiates a connection φ to host φDIP ,

with φPR ∈ {tcp, udp}, and over port φDP where φDP /∈
WL, which is a white list of ports1. Then, the out-degree

from this host at time t is

OD (IP, t,WL, T) : # {φDIP |φSIP = IP, φDP /∈WL,

φPR ∈ {tcp, udp} , |φST − t| < T} ,

where #A is the number of unique elements in set A. Note

that the out-degree depends on the current time, t, and the

time window T .

In-degree is defined similarly,

ID (IP, t,WL, T) := # {φSIP |φDIP = IP, φDP /∈WL,

φPR ∈ {tcp, udp} , |φST − t| < T} .

Note that using in-degree as a P2P detection method is

challenging since typical servers also have high in-degree.

However, using it should not be neglected since large in-

degree is also a possible indication of P2P activity. To reduce

false positive, it is critical that the white list (especially for

servers) be complete2. The times when a host with address

IP is possibly engaged in P2P activity is given by

PACT,R (IP) := {t|α× ID (IP, t,WL, T)+

OD (IP, t,WL, T) > R}.

Because of false positives, we reduce the effect of in-degree

by utilizing α < 1 and do not use PAC alone to detect P2P

flows. Instead, we use it along with a method discussed in the

next section.

As compared to in-degree, out-degree is a better indication

of P2P activity. For example, as mentioned, servers often

have high in-degree, leading to false positives. Moreover, in-

degree may be zero when some P2P users are behind NATs or

1The white list we used was TCP ports < 1024, and TCP posts 1025, 1755,
2967, 3268, 3724, 5050, 5190, 5351, and 8080, and UDP ports < 1024, and
UDP ports 1755, 3268, 3724, and 5351.

2In tightly control enterprises or in military networks, all allowed applica-
tions are known, and hence white listing might be complete.

firewalls, and hence cannot accept incoming connections. On

the other hand, out-degree has some drawbacks. For example,

it is possible that the host is engaging in P2P activity while

at the same time using some application that is not included

in the white list. While such false positives can be eliminated

only with a better white list, we note that these false positives

require two events to occur, the simultaneous use of P2P and

some other application and that other application is not on the

white list.
Considering the above, we define a detector based on out-

degree as follows.

ACT,R := {φ|φST ∈ {t|OD (φSIP , t,WL, T) > R}∪

{t|OD (φDIP , t,WL, T) > R} , φDP /∈WL} ,

where {t|OD (φSIP , t,WL, T) > R} is the set of times

where each host with IP address equal to φSIP has a

large out–degree. Thus, {t|OD (φSIP , t,WL, T) > R} ∪
{t|OD (φDIP , t,WL, T) > R} is the set of times where

either the source or destination of φ has large out-degree.
The parameters R and T can be set in a conservative

fashion, which will miss many P2P flows, and yet, after

applying the second class of methods, will still detect all P2P

flows.

C. Known Port

Often a P2P application has a specified default port.

These ports are often published on the web or can easily

be determined by monitoring the application. We call these

ports known P2P ports (KP)3. Of course, unknown P2P

applications might use unknown ports. Moreover, known P2P

applications can use different ports besides the standard know

P2P ports. In these cases, P2P flows can be detected using

degree-based P2P detection method and the second class of

methods. The detection of P2P applications where the port is

unknown is also discussed in Section V-B.
We have found that using a list of P2P ports to detect flows

results in some false positives when other applications use the

ports. For example, GroupWise uses randomly generated UDP

source ports. These ports sometimes match known P2P ports.

These false positives can be reduced by requiring both the

usage of a known P2P port and P2P behavior, as described in

the previous section. Thus, we have the following detector,

KPFT,R := {φ |φDP ∈ KP,φST ∈ TP}∪

{φ |φSP ∈ KP,φPR = udp, φST ∈ TP} ,

where TP is PACT,R (φSIP)∪PACT,R (φDIP). Note that if

P2P applications use known P2P ports, TCP uses known ports

for listening, while UDP may use the ports for listening and for

initiating connections (e.g., UDP-based host caching protocol

in Gnutella [17]). For this reason, KPFT,R is composed of

two terms. Also, the P2P activity detected by the PAC method

can be at the source or the destination, hence, we use the union

PACT,R (φSIP) ∪ PACT,R (φDIP).

3Default ports used for each P2P application in our research are as follows.
BitTorrent: 6881~6889, 6969, 2710, Gnutella: 6346~6349, Edonkey: 2323,
3306, 4242, 4500, 4501, 4661~4674, 4677, 4678, 7778, 1214, 1215, 1331,
Freenet: 19114, 8081, and Soulseek: 2234, 5534.

D. Repeated Communication between Known P2P Peers

Once two hosts are identified as P2P peers, we assume that

any other communication between the hosts is also a P2P flow

since in [12] nearly 99.5 % or more of flows between two hosts

is from a single application. This detection method is defined

by

G (θ) := {φ|φDIP = θDIP , φSIP = θSIP}∪

{φ|φDIP = θSIP , φSIP = θDIP} ,

where θ is the initial P2P flow. This method is extended to

take a set of known P2P flows as an input argument, G (Θ) :=

Θ ∪
⋃

θ∈Θ

G (θ) .

E. P2P Port Identification and Port-Based P2P Detection

The information of P2P ports that hosts are using leads

to the detection of more other P2P flows. For example, the

incoming flows to the P2P port identified are also likely to be

P2P flows. The identification of P2P ports is straightforward

from a confirmed P2P flow θ. If a confirmed P2P flow θ is

formed by TCP connection from peer A to peer B (i.e., peer

A sent the first SY N packet), we identify a peer B’s P2P port

that is the destination port θDP since the P2P application on

peer A assigns the destination port the peer B’s incoming P2P

port. On the other hand, if θ is formed by UDP connection,

we identify not only a peer B’s P2P port (= θDP) but also a

peer A’s P2P port (= θSP) if the P2P application on peer A
uses UDP for P2P network controlling purposes. We observed

many times that the peer A’s UDP source port is the same

port open for incoming P2P flows.

Given a TCP (or a UDP) confirmed P2P flow θ, three types

of flows will be identified based on the identified P2P port

θDP via

M (θ) :=
{φ|φDIP = θDIP , φDP = θDP , φPR = tcp}∪
{φ|φDIP = θDIP , φDP = θDP , φPR = udp}∪
{φ|φSIP = θDIP , φSP = θDP , φPR = udp}∪
The first two types identify the incoming flows to

{θDIP , θDP} and the third the outgoing flows from it. On

the other hand, given a UDP P2P flow θ, six types of flows

will be identified based on the identified P2P port θDP as well

as θSP . Therefore, given any P2P flow, other P2P flows can

be detected via

H (θ) :=M (θ)∪
{φ|φDIP = θSIP , φDP = θSP , φPR = tcp, θPR = udp}∪
{φ|φDIP = θSIP , φDP = θSP , φPR = udp, θPR = udp}∪
{φ|φSIP = θSIP , φSP = θSP , φPR = udp, θPR = udp} .
One complication of this method is that an application

might stop using one port and start using another port. More

importantly, some other applications might start using a port

that was once used by the P2P application. Thus, for a given

P2P flow, we assume that the ports identified by this flow are

used by the P2P application for no more than T seconds. For

example, suppose that θ is a P2P flow and flow φ uses the

same identified P2P port as θ. Then, in order for θ to be used

to identify φ as a P2P flow, we require that |θST − φST | ≤ T .

Note that |φST − θST | ≤ T is omitted for each union set in

H (θ) but assume that it is there and hence H (θ) becomes

HT (θ).

F. Triggered P2P Detection

Once a P2P flow is detected, it is likely that other flows

started at the same time are also P2P flows. In fact, the

behavior-based methods in Section III-B are based on the

tendency of P2P flows to start at approximately the same time.

Based on this observation, we assume that given a P2P flow,

any flow that starts at approximately the same time is also

a P2P flow, where we say that flows start at the same time

if they start within one second (the time resolution of our

measurements). Thus, we define the following detection given

a P2P flow θ.

TA (θ) := {φ|φSIP = θSIP , φDP /∈WL, |φST − θST | ≤ 1}∪

{φ|φSIP = θDIP , φDP /∈WL, |φST − θST | ≤ 1}

Note that other thresholds could be used so that flows that

start within T seconds of a P2P flow are declared to be P2P

flows for some T . Or, by combining the methods of Section

III-B, we could insist that the in or out-degree exceeds some

threshold. However, we have found that these approaches have

little impact on the total number of flows detected, especially

after the other methods are also applied.

G. Summary of Detection Methods

Five methods for detecting P2P flows are described above.

• Section III-B defines ACT,R, which is the set of flows

that start when the destination or source of the flow has

a large out-degree.

• Section III-C defines KPFT,R, which is the set of flows

that use a known P2P port while the source or the

destination of the flow has a high in-degree or out-degree.

• Section III-D defines G (θ), which tags all flows between

the end hosts of flow θ to be a P2P flow.

• Section III-E defines HT (θ) which tags all flows that use

the same ports as θ to be a P2P flow, where use of a port

depends on the transport protocol.

• Section III-F defines TA (θ), which tags all flows that

start within one second of θ as a P2P flow.

Note that G (θ), HT (θ) and TA (θ) can be applied re-

peatedly. That is, if H (θ) finds some new P2P flows,

it can be applied to each of the newly found flows. To

this end, let GH (Θ) = G (H (Θ)) and let GHk (Θ) =
GH

(
GHk−1 (Θ)

)
, where GH1 (Θ) = GH (Θ). Similarly,

define TGH (Θ) = T (G (H (Θ))) and define TGHk simi-

larly. Finally, we iterate GH and TGH until convergence via

GH∞ (Θ) := lim
k→∞

GHk (Θ)

TGH∞ (Θ) := lim
k→∞

TGHk (Θ) .

Methods GH∞ and TGH∞ require an initial set of

P2P flows. This initial set of flows can be ACT,R,

KPFT,R or the union of the two. That is, the P2P

flows detected can be GH∞ (ACT,R), GH
∞ (KPFT,R), or

C1 C2 C3
0

0.2

0.4

0.6

0.8

1

Combination

F
r
a
c
ti
o
n
 o
f
fl
o
w
s

KPF480, 250

AC15,100

GH

TGH

x 10
7

Combination

#
 o
f
fl
o
w
s

C1 C2 C3

0

2

4

6

8

Fig. 1. Flows detected with different combinations of meth-
ods. C1 applies KPFT,R and then GH∞

(
KPFT,R

)
and finally

TGH∞
(
GH∞

(
KPFT,R

))
. C2 is similar, but starts with ACT,R while

C3 applies KPFT,R then ACT,R and then GH∞ and TGH∞. (a) shows
the fraction of flows detected that were also detected by the signature method,
while (b) shows the total number of all flows detected, which includes flows
that were also detected by signatures and flows that were not detected by
signatures.

GH∞ (ACT,R ∪KPFT,R), and GH∞ can be replaced with

TGH∞. The behaviors of these methods are discussed in the

next sections.

IV. NUMBERS OF P2P FLOWS DETECTED

The data used for this analysis includes results from byte-

string signatures for some P2P applications. However, as

discussed in Section II, the signatures only detect a subset

of P2P applications and only consider TCP flows. Thus, these

signatures can be only used to determine false negatives (i.e.,

we can determine if our methods miss P2P flows). Hence,

we consider the total number of flows detected as well as the

fraction of flows detected by the signature method that are

also detected by our methods.

Figure 1(a) shows the fraction of flows detected by signa-

tures that were also detected by our methods, while Figure 1(b)

shows the total number of flows detected. Here we use ACT,R
with T = 15 sec and R = 100 andKPFT,R with T = 480 sec

and R = 250. Observe that KPF480,250 discovers far fewer

flows than AC15,100. The combination of detection methods

labeled C1 starts with KPF480,250, then applies GH∞ to

determine GH∞ (KPF480,250), and finally applies TGH∞ to

determine TGH∞ (GH∞ (KPF480,250)). The combination

of methods labeled C2 and C3 are similar, but start with

initial sets of flows AC15,100 and KPF15,100 ∪ AC15,100,
respectively.

While the initial sets of flows are different, after applying

GH∞, the number of flows detected is approximately the

same. Note that this is the case even if the initial set of flows is

KPF480,250 which is a far smaller set of flows than AC15,100.
From Figure 1(a) we see that about 90% of all flows that were

detected with the byte-string signature were also detected by

GH∞. Nearly all remaining flows are detected by applying

TGH∞, which detects 99% of the flows that were detected

with the byte-string signature.

While false positives cannot be directly observed, we know

that the byte-string signature methods have very low false

positives probabilities. With this assumption, Figure 1 provides

some indication of false positives by comparing the propor-

tions of flows detected in Figure 1(a) to the corresponding

proportions in Figure 1(b). Specifically, given a set of flows

Θ, let S (Θ) be the set of P2P flows in Θ detected by the

signature method. If we assume that the signature method

detects a P2P flow at random with probability α, then, if Θ is

an arbitrary set of P2P flows, we have α |Θ| = |S (Θ)|, where

|Θ| is the number of flows in Θ. On the other hand, if Θ is

a set of flows that includes flows that are not P2P flows, then

α |Θ| > |S (Θ)|. Generally, we have α ≥ |S (Θ)| / |Θ|, with

equality if and only if Θ only contains P2P flows. Therefore,

if our detection methods have no false positives, then

α = |S (KPF480,250)| / |KPF480,250|

= |S (GH∞ (KPF480,250))| / |GH
∞ (KPF480,250)|

= |S (TGH∞ (GH∞ (KPF480,250)))| /

|TGH∞ (GH∞ (KPF480,250))| .

In fact, by comparing the values in combination C1 in Figures

1 (a) and (b), we see that these ratios are nearly the same,

meaning that Θ detected by our methods nearly does not

include non-P2P flows. While this provides some indication

of low false alarm probability, this argument relies on the

assumption that the signature method detects P2P flows at

random, which is not the case (e.g., the signature method does

not detect any UDP flows)

V. GRAPHICAL ASPECTS OF P2P FLOW DETECTION

A. Large Connected Component

In the previous section we saw that TGH∞

(KPF480,250) ≈ TGH∞ (AC15,100). This behavior can be

understood by modeling P2P flow detection as traversing

vertices on a graph. We define the P2P flow graph where

each vertex is a P2P flow. The detection methods G, H, and

TA define edges between vertices. By the definitions given

in Section III-A, it is clear that these edges are bidirectional.

Thus, GH∞ (θ) is the set of flows that are reachable from the

flow θ when edges are constructed from G and H. Similarly,

GHk (θ) is the set of flows that are within k hops of θ.
TGH∞ (θ) and TGHk (θ) can be interpreted similarly but

where edges are defined by G, H and TA. For example,

GH∞ (KPF480,250) is the set of vertices reachable from

some flow in KPF480,250 and GH∞ (AC15,100) is the set of

flows reachable from some flow in AC15,100
Figure 2 shows the complementary cumulative dis-

tribution function (CCDF) of |GH∞ (θ)| for different

initial flows θ selected from the set of P2P flows

TGH∞ (KPF480,250 ∪AC15,100). The key observation is

that |GH∞ (θ)| is typically very large. This implies that

when edges are defined by G and H , a large number of

flows are reachable from θ. This also implies that the graph

of P2P flows with edges defined by G and H has a large

connected component. Since edges are bidirectional, as long

as the initial flow is within this large connected component,

we will discover all the other flows in this component. Given

0 1 2 x 10
50

0.2

0.4

0.6

0.8

1

of flows reachable

C
C
D
F

type1 = all

type2 = UDP

type3 = TCP, DIP = internal IP

type4 = TCP, DIP = external IP

… 7 x 10
7

69,689,80463,217,662

115,69216,932,282

69,689,80468,179,534

69,689,80449,476,748

69,689,80463,217,662

115,69216,932,282

69,689,80468,179,534

69,689,80449,476,748

x 10
5

Fig. 2. CCDF of the number of P2P flows found given a single P2P flow
and when GH∞ (θ) is used to find P2P flows. The number of flows found
depends on whether the given P2P flow uses UDP or TCP and whether the
destination is within the monitored network when TCP is considered.

the size of this large connected component, a randomly

selected flows is likely to be within this component. Thus

even though |KPF480,250| << |AC15,100|, most of these

flows are within the same connected component, and hence

GH∞ (KPF480,250) ≈ GH∞ (AC15,100).
Figure 2 shows that the number of flows reached depends

on the type of initial flow. For example, an arbitrarily selected

UDP P2P flow is in the large connected component with

probability 0.98. As discussed in Section III-E, the identifi-

cation of a single P2P flow that uses UDP identifies six other

types of flows. Thus, we expect that the identification of a

P2P flow over UDP would lead to the detection of many

flows. Similarly, TCP flows where the destination is within

the monitored network (i.e., an internal destination) are in the

large connected component with probability 0.90. Hence, these

flows are also useful for detecting a large number of P2P flows.

On the other hand, TCP flows where the destination is not

in the monitored network (i.e., an external destination) are

typically not in the large connected component. Nonetheless,

around 20% of these flows are in the large connected compo-

nent. Note that for this type of TCP flow, we might not observe

any other flows to this destination. Thus, the knowledge of the

destination’s P2P port might not yield any other P2P flows.

However, in some cases the destination host is a super node.

An important implication of the existence of a large con-

nected component is that discovering flows in this component

is relatively easy. Thus even if we conservatively set the

parameters used by methods for the initial set of P2P flows to

avoid false positives, those methods will have a good chance

to find flows in the large connected component.

B. Connected P2P Flows

Note that the algorithms presented in Section III detect

several different P2P applications. However, flows from these

applications appear in the same connected component. The

reason for this behavior is that some hosts act as bridges

between different applications. Specifically, hosts that run

applications such as LimeWire [18] support multiple P2P pro-

tocols simultaneously. These applications often use the same

port for multiple P2P protocols. Thus, method H will discover

this port and then find flows for multiple P2P protocols that

use this port. As a result, H will construct an edge between

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
-3

10
-2

10
-1

10
0

of flows reachable

C
C
D
F

type1

type2

type3

type4

Fig. 3. The degree distribution of P2P flows (i.e., the number of flows
detected from GH1 (θ)).

TA link

small connected

components

GH link

large connected

component

Fig. 4. The graph of P2P flows has a large connected component where edges
within the component are defined by GH. There are many other connected
components. Edges between the large connected component and these other
components can be formed with TA.

flows that use different P2P protocols. Consequently, even if

the list of known ports does not include new P2P applications,

the existence and continued maintenance of applications that

support multiple P2P protocols allow the methods presented

here to detect new P2P applications.

C. Vertex Degree and Diameter

Figure 3 shows the degree distribution of the vertices in the

graph. Note that there exist vertices with high degree. That is,

for some flows, there are many flows that can be detected with

a single application of GH . For example, there exists a flow θ
such that

∣∣GH1 (θ)
∣∣ > 105. These flows play a critical role in

the large connected component. Super nodes are one source

of high degree vertices. For example, we found that nearly

1000 different hosts within the monitored network with 3161

hosts connected to a single super node. Moreover, hosts often

connect to several super nodes. The result is that when a single

node’s port is detected, we can detect several super nodes and

their P2P ports. These super nodes lead us to a large number

of flows as well as to other hosts’ ports. These ports lead us to

more super nodes and so on. After a few iterations, all super

nodes are found.

D. Disconnected Components

Not all of the P2P flows are within the large connected

component where edges are defined by G and H . Instead,

some flows can only be reached by applying TGH∞. Specif-

ically, we can model the graph of P2P flows where there

are two types of edges. The first type is defined by G or

H , and the second type is defined by TA. Recall that by

including the edges defined by TA, we detect 99% of the

flows detected by the byte-string signatures whereas without

TA, approximately 90% of P2P flows were detected. Figure

4 shows a visualization of the P2P flow graphs. Specifically,

most flows are within the large connected component and a

few flows are within the small connected component. The

edges within a component are defined by G and H . However,

it is the edge defined by TA that connect any two components.

VI. CONCLUSION

The paper proposes a novel identification method based

on iteratively detecting P2P flows based on P2P ports and

other methods. The results show effectiveness of our method,

namely, P2P flows and users of P2P applications can be

quickly and easily identified. The iterative methods require

an initial set of P2P flows, which is expanded during each

iteration. We find that even with a small number of initial

P2P flows, the iterative methods can detect most P2P flows.

Considering a graphical view of P2P detection, we see that

most P2P flows are within the same connected component

even if the flows are from different P2P applications. Thus, the

identification of one flow in this connected component leads

to the detection of all flows in this component. This behavior

greatly simplifies the tasks such as selecting parameters of

detection methods and generating lists of ports used by P2P

applications.

REFERENCES

[1] King, A.B.: Speed Up Your Site: Web Site Optimization. New Riders
Press (2003)

[2] Morparia, J.: Peer-to-peer botnets: Analysis and detection. Master’s
thesis, San Jose State University (2008)

[3] paloalto Networks, http://www.paloaltonetworks.com.
[4] Nevis Networks, http://www.nevisnetworks.com.
[5] Karagiannis, T., Broido, A., Faloutsos, M., Claffy, K.: Transport layer

identification of P2P traffic. In: IMC’04. (2004) 121–134
[6] Bartlett, G., Heidemann, J., Papadopoulos, C., Pepin, J.: Estimating P2P

traffic volume at USC. Technical Report IST-TR-645, USC/Information
Sciences Institute (June 2007)

[7] Wagner, A., Dubendorfer, T., Hammerle, L., Plattner., B.: Flow-based
identification of P2P heavy-hitters. In: ICISP. (2006)

[8] Erman, J., Arlitt, M., Mahanti, A.: Traffic classification using clustering
algorithms. In: MineNet’06. (2006)

[9] Wang, R., Liu, Y., Yang, Y.X., Wang, H.L.: A new method for P2P traffic
identification based on support vector machine. In: AIML. (2006) 13–15

[10] Zander, S., Nguyen, T., Armitage, G.: Automated traffic classification
and application identification using machine learning. In: LCN’05.
(2005)

[11] Hua, Y., Chiu, D.M., Lui, J.C.: Profiling and identification of P2P traffic.
Computer Networks 53 (2009) 849–863

[12] Jin, Y., Duffield, N., Haffner, P., Sen, S., Zhang, Z.L.: Inferring
applications at the network layer using collective traffic statistics. In:
ITC 2010. (2010)

[13] Karagiannis, T., Papagiannaki, K., Faloutsos, M.: BLINC: Multilevel
traffic classification in the dark. In: SIGCOMM’05. (2005)

[14] Iliofotou, M., Pappu, P., Faloutsos, M.: Network monitoring using traffic
dispersion graphs (TDGs). In: IMC’07. (2007)

[15] Jin, Y., Sharafuddin, E., Zhang, Z.L.: Unveiling core network-wide
communication patterns through application traffic activity graph de-
composition. In: SIGMETRICS’09. (2009)

[16] L7-filter, http://l7-filter.sourceforge.net.
[17] Gnutella Specification, http://wiki.limewire.org/index.php?title=GDF.
[18] LimeWire, http://www.limewire.com.

