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1 Introduction

From the early days of AI, computers have been programmed to play games against hu-
man players [22, 23]. That continues to this day [38, 32, 19, 7, 33, 25, 35, 26, 4, 39].
Most of the AI work has sought to build world-champion programs to play turn-based
games such as Chess and Checkers [5, 32]. But since it’s beginnings in the late 1970s,
computer gaming has become more and more prevalent as a form of recreation/enter-
tainment. In 2009, it was reported that computer and video games was a ten and a half
billion dollar industry [10]. In contrast to the turn-based two-player games that AI origi-
nally studied, the two-player and multi-player games developed by the computer gaming
industry increasingly provide for simultaneous movement.

Simultaneous movement was seldom used in games before the advent of computers
because of the bookkeeping complexities it introduces. But now that everyone has a
computer, simultaneous movement games are more common. They are more common
because in a sense they are more realistic; in war and business competition, the partic-
ipants don’t take turns, they act as soon as they know what they want to do. There is
work being done in the Artificial Intelligence community that involve this more realistic
action, but a) it is still in its early phases and b) it appears to have ignored what classical
game theory has to say about simultaneous movement games [9, 6].

In this proposal we present an adaptation of Recursive Game Theory which can be
used to analyze computer games. Recursive game theory deals with simultaneous move-
ment games with many (possibly looping) states, and we believe this often overlooked
branch of game theory to be incredibly applicable to modern computer games. In Sec-
tion 2 we describe the premise of several example games which have properties found
in modern games, as well as give a complete formalization of these games. In Section
3 we briefly discuss the relevant aspects of game theory in general and Recursive game
theory specifically required to understand our application of the theory. We then describe
our adaptation of recursive game theory in 4. Finally, we propose two possible systems
for generating game AI programs which apply our adaptation of the theory: 1) an offline
planner which produces a program which follows a universal plan for the input game in
Section 5, and 2) an online planner which uses recursive game theory to make decisions
on the fly during game play in Section 6.

2 Game Collection

In this section we provide descriptions of several games used in this proposal. The
premise of each game is given, followed by a formalization of the game.
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2.1 Right Turn

Right Turn is a minor variation on the Hamstrung Squad Car game first proposed in
[18]. This game has the property that the orc can’t win when the game starts from
certain states and the monkey plays optimally. Nevertheless, when the game is at one
of these states, some orc actions are preferable to other actions. Consideration of these
preferences leads to our Game Theory of Lowered Expectations in Section 4.2. In Section
2.1.1 we describe the premise of the game. We then describe formally the rules of the
game in Section 2.1.2.

2.1.1 Premise

Thok Fump is a soldier in the High Orc Guard. Unfortunately today his pet capuchin
monkey Lil’ Cal decided to run away whilst the two were outside playing. To further
complicate matters, today is right turn Friday! That is, it’s against the law in Thok’s
village to turn left (and it’s not a good idea to break orc laws). On the bright side, Thok’s
training has rendered him an excellent sprinter (so he’s able to outrun Lil’ Cal). As an
orc, Thok isn’t very smart - so he needs our help to catch his Lil’ Cal.

2.1.2 Rules

The naive way to represent the state of this game would require five parameters: two
parameters to locate the position of the monkey, two parameters to locate the position
of the orc, and one parameter to show the orc’s orientation (facing North, South, East,
or West). The number of parameters can be reduced to two by considering any states
that can be transformed into each other by translations and/or 90◦ rotations as the same
state. That state is represented by the single configuration where the monkey is at the
origin of the Cartesian plane and the orientation of the orc is to be facing North. The
only remaining parameters that are needed to specify a state are then the coordinates of
the orc relative to the monkey. (This representation is similar to the one used by Rufus
Isaacs[18].)

A State in Right Turn is a vector (x, y) such that x, y ∈ Z; and (x, y) represents the
position of the orc facing North on the cartesian plane relative to the position of the
monkey.

The following classes of states are terminal and are win states for the orc:

(x, y) 3−− |x| ≤ 1 ∧ |y| ≤ 1 (2.1)

There are no win states for the monkey. The monkey’s only goal is to keep the game
going.

Informally, the game ends when the monkey is within arm’s reach of the orc - that is,
when the orc is in the monkey’s Moore neighborhood [17].

Possible actions at each state for the orc are to either move forward two steps or to
turn right and move forward two steps. These shall henceforth be referred to as F and R,
respectively. Possible actions for the monkey in any state are to move North (N ), South
(S), East (E), or West (W ) one step.

Let α be the action chosen by the orc and β the action chosen by the monkey. Then,
for state γ = (x, y) the next state γ′ is obtained via Algorithm 1.

In English: when the monkey moves, the result is that the orc is displaced by one unit
in the opposing direction. The orc, who is always left facing North, will move North by two
units when choosing to move foward. When the orc chooses to turn right, he will move
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two units to the East and the entire board is rotated counterclockwise 90 degrees around
the monkey (orienting the orc Northward again).

Algorithm 1 Transition function for Right Turn
(x′, y′)← (x, y)

if β = N then
y′ ← y′ − 1

else if β = S then
y′ ← y′ + 1

else if β = E then
x′ ← x′ − 1

else if β = W then
x′ ← x′ + 1

end if

if α = F then
y′ ← y′ + 2

else if α = R then
t← x′ + 2
x′ ← −y′
y′ ← t

end if

return (x′, y′)

2.2 Bear Brawl

Bear Brawl is a class of simple, perfect information games which embody many of the
basic concepts found in fantasy games played by humans. The premise of the game is
explained in Section 2.2.1. In Section 2.2.2 we describe a simple instance of Bear Brawl
which we will use to illustrate our theory in the later sections.

2.2.1 Premise

In an exhortion attempt The Evil Wizard Bertram cast a devious spell upon the kingdom
of Quahogeroth. Unless King Stewie hands over the entire contents of the royal treasury
to Bertram, all of Quahogeroth will remain under Bertram’s spell whereupon they will
dance to Aqua’s 1997 single ”Barbie Girl” in perpetuity.

Distraught, King Stewie sought the help of a band of noble warriors to seek out the
magical antidote to Bertram’s spell. As it turns out, the main ingredient to the antidote
is a magical powder which can be harvested from Phoolabairs Forest. Unfortunately,
however, the bears indigenous to the forest will guard the powder with their lives as they
enjoy sniffing it to get high.1

Can our heroes brave a forest of cracked out bears in order to save Quahogeroth from
an eternity of getting down to cheesy 90s techno? Will the bears be able to sucessfully

1Any resemblence between the magic powder and any real mind-altering substance used by humans is purely
coincidental.
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guard their precious mind-altering substance from outside looters? Through a combi-
nation of game theory, machine learning, and heuristic search we hope to answer these
questions and more.

2.2.2 1D Hero vs. Bear

In this section we introduce the rules of a variation of Bear Brawl we refer to as the
One-Dimensional one hero vs. one bear problem (1D1H1B).

This variation is played on a (possibly infinite) one-dimensional board indexed by Z.
The powder is always located at location 0. The game progresses as a series of rounds
such that on each round both the hero and the bear (independently) choose one of Move
left, Move right, or Attack.

A state in 1D1H1B is a vector (u, v, x, y) such that u, v ∈ N, x, y ∈ Z; and u represents
the hit points of the hero, v the hit points of the bear, x the location of the hero, and y the
location of the bear.

The following classes of states are terminal and are win states for the hero:

(u, v, 0, y) 3−− u, v > 0 ∧ y 6= 0 (2.2)

(u, 0, x, y) 3−− u > 0 (2.3)

The following class of states are terminal and are win states for the bear:

(0, v, x, y) (2.4)

Informally, The hero wins either when she2 obtains the powder (her position is 0 and
the bear’s is not), or when she kills the bear (the bear’s HP reaches 0). If at any point the
hero dies (her HP reaches 0), the bear is declared the victor.3

Possible actions at any state for either player are to move left, move right, or attack.
These shall henceforth be referred to as L, R, and A, respectively.

Let α be the action chosen by the hero and β the action chosen by the bear. Then, for
state γ = (u, v, x, y) the next state γ′ is obtained via algorithm 2. In English, moving left
or right will cause your location to decrement or increment, respectively. Attacking when
your opponent occupies the same location as yourself will cause your opponent to lose
one hit point. When resolving actions to determine the next state, moves resolve before
attacks - i.e. a player can walk into an attack or jump out of the way of one.

3 Game Theory Background

In this section we will describe and discuss the background necessary in understanding
our approach to games. We begin in subsection 3.1 by describing necessary foundational
theory in two-player zero-sum games. We then introduce the concept of a Recursive Game
in subsection 3.3, which is the starting point for our approach.

2Our hero in this game is a woman. The bear, however, is male. A big, angry, tweaked male bear.
3Note that the bear may go down a martyr if he and the hero die at the same time.
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Algorithm 2 Transition function for 1D1H1B
(u′, v′, x′, y′)← (u, v, x, y)

if α = L then
x′ ← x′ − 1

else if α = R then
x′ ← x′ + 1

end if

if β = L then
y′ ← y′ − 1

else if β = R then
y′ ← y′ + 1

end if

if α = A ∧ x′ = y′ then
v′ ← v′ − 1

end if

if β = A ∧ x′ = y′ then
u′ ← u′ − 1

end if

return (u′, v′, x′, y′)

3.1 Two-Player, Zero-Sum Games

The theory in this section is derived from [30]. For a more in depth discussion of game
theory and two-player, zero-sum Games see [30], [36] or [24].

A two-player, zero-sum Game Γ is an object with the structure:

Γ = (N,C, u) (3.1)

where N is the set {P1, P2} of players, C is a vector (C1, C2), where C1 and C2 are the sets
of available actions for player 1 and player 2, respectively, and u is a function C1×C2 7→ R
which is the payoff function.4

As an example, consider the MacWiggins brothers, Sven and Olaf. It’s a typical evening
at the bar for these two. The alcohol has been flowing freely, and they have again gotten
into a heated argument over who has the finest, most full bodied beard. These arguments
over facial hair generally culminate in fisticuffs, and tonight was no exception. Now Sven,
who is ambidexterous (and thus is capable of punching equally hard with either arm,)
has Olaf up against the wall. Olaf, not knowing from which direction his brother’s blow
will come, has the option of dodging either left or right.

If Sven punches with his right hand and Olaf dodges to the right, the punch will
connect and Olaf will end up with a black eye. The outcome will be very similar if Sven
punches with his left hand and Olaf dodges to the left. However, if Sven punches with his
right hand and Olaf dodges to the left or vice-versa, Sven will miss his brother and hit the
wall, only to end up with a broken hand.

4N.B. that one of the players (generally 1) is the maximizing player with the goal of maximizing u. The other
player is the minimizing player with the goal of minimizing u.
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We can model the MacWigginses’ situation as the two-player, zero-sum game
({1, 2}, ({PL, PR}, {DL,DR}), u) where Sven is player 1, Olaf player 2, PL and PR stand
for punch left and punch right, respectively, DL and DR stand for dodge left and dodge
right, respectively, and u is defined by the matrix in (3.2). u DL DR

PL 1 −1
PR −1 1

 (3.2)

Note that, as the maximizing player, Sven’s most favorable outcomes are (PL,DL) and
(PR,DR) - exactly the outcomes in which his fist makes contact with his brother’s skull.
Olaf as the minimizing player prefers (PL,DR) and (PR,DL) - which correspond to those
outcomes in which Sven ends up with bloody knuckles.

3.2 Solving Two-Player, Zero-Sum Games

A strategy σi for player i is defined to be a probability disribution over Ci - that is, σi : Ci 7→
{x ∈ R|0 ≤ x ≤ 1} and

∑
c∈Ci

σi(c) = 1. A strategy σi is said to be pure if (∃c ∈ Ci)[(σi(c) =
1) ∧ (∀c′ ∈ Ci)(c′ = c ∨ σi(c′) = 0)], i.e. a pure strategy is one in which the player chooses a
specific action with 100% certainy. A strategy σi which is not a pure strategy is a mixed
strategy, in which the player i stochastically chooses his/her action using the probability
distribution defined by σi. Let ∆(Ci) be the set of all possible strategies ranging over Ci.

Going back to our farmer siblings, (1, 0) would be the pure strategy for Sven in which
he always chooses to punch with his left hand. Olaf could counter this strategy with the
pure strategy (0, 1), in which case he would always dodge to the right. An example mixed
strategy for Sven is (0.5, 0.5) - meaning he will choose to deliver a right hook with 50%
probability, and a left hook the other 50%.

For a two-player, zero-sum game Γ, Let σ = (σ1, σ2), where σ1 and σ2 are strategies for
players 1 and 2, respectively, be a mixed strategy profile. The utility u′(σ) of σ is defined to
be: ∑

c1∈C1

∑
c2∈C2

σ1(c1) · σ2(c2) · u(c1, c2) (3.3)

A mixed strategy profile σ is a Nash Equilibrium iff

(∀τ ∈ ∆(C1))[u′(σ) ≥ u′((τ, σ2))] ∧ (∀τ ∈ ∆(C2))[u′(σ) ≤ u′((σ1, τ))] (3.4)

That is, neither player could increase her/his expected payoff by unilaterally deviating
from her/his strategy as specified by σ. 5

To find a Nash Equilibirum σ for a game Γ, one must solve the following pair of dual
optimization problems:

maximize v subject to:

(∀c2 ∈ C2)

(
v ≤

∑
c1∈C1

u(c1, c2) · xc1

)
∑
c1∈C1

xc1 = 1

(∀c1 ∈ C1)(xc1 ≥ 0)

(3.5)

5Note that equation (3.4) is the definition of a Nash Equilibrium when player 1 is the maximizing player and
player 2 the minimizing. If the opposite case is true, the inequalities in (3.4) must be reversed.
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and

minimize w subject to:

(∀c1 ∈ C1)

(
w ≥

∑
c2∈C2

u(c1, c2) · yc2

)
∑
c2∈C2

yc2 = 1

(∀c2 ∈ C2)(yc2 ≥ 0)

(3.6)

The resulting vectors (xc1 |c1 ∈ C1) of (3.5) and (yc2 |c2 ∈ C2) of (3.6) give us σ1 and
σ2, respectively, of σ. This result, including the fact that v = w is the foundation of two-
player zero-sum game theory. For more information on optimization, solving optimization
problems using linear programming, and linear programming as it relates to two-player,
zero-sum games see [40]. A very good discussion on two-player, zero-sum games as linear
programming problems is also in [36].

The fundamental theorem about about two-person zero-sum games is that they all
have Nash equilibria, and if there is more than one Nash equilibrium for a game, the
value of the game is the same for each Nash equilibrium [3, 24, 30, 36]. For any game Γ,
let N (Γ) be some Nash Equilibrium for Γ, and let V(Γ) be u′(N (Γ)) or the value of Γ. In
practice N and V are computed together. As it turns out, in the case of the MacWigginses,
((0.5, 0.5), (0.5, 0.5)) is the only Nash Equilibrium profile. Both Sven and Olaf should choose
randomly and evenly between their possible actions, and the value of the game is 0.

3.3 Recursive Games

Recursive games were originally postulated by Everett in [12].
A recursive game <Γ is defined as follows:

<Γ = (Γ,ΓT , N,CΩ, C, f, p) (3.7)

Where N is as defined in equation (3.1); Γ is a set of states; ΓT ⊂ Γ is a set of terminal
states; CΩ is a tuple (CΩ

1 , C
Ω
2 ) where CΩ

1 and CΩ
2 are the sets of all available actions for

player 1 and 2, respectively; C is a tuple (C1, C2) such that Ci for i ∈ {1, 2} is a function
Γ 7→ P(CΩ

i ) which gives the set of available actions for player i in a given state; f is a
partial function Γ \ ΓT × CΩ

1 × CΩ
2 7→ Γ which is the transition function and satisifes the

property (∀γ ∈ Γ \ ΓT )(∀c1 ∈ C1(γ))(∀c2 ∈ C2(γ))(f(γ, c1, c2) ∈ Γ); and p is a function ΓT 7→ R
which is the payoff function.

For a small example, let’s consider the sister rogues Guan Damei and Guan Xiaomei.6

Damei is an exceptionally talented archer, whereas Xiaomei prefers daggers and is a
master of stealth. The sisters regularly hold practice sessions to keep up their position
as the two best rouges in the land. In this particular session, Damei has only one arrow
left to fire. If she fires it while her sister is hiding, she’ll be a sitting duck for Xiaomei to
knife in the back at her leisure. However, Xaiomei can pop out of stealth at any moment
and surprise stab her sister. It’s only when Damei chooses to fire her arrow at the same
time her sister drops stealth that she’ll come out on top (not even Xiaomei is fast enough
to avoid Damei’s perfect aim).7

6”Big Sister” and ”Little Sister”, respectively.
7To be clear, the sisters use prop weapons during training - the only harm done to the loser is to her pride.
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We can model this particular session as the recursive game
({S,D,X}, {D,X}, ({W,R}, {W,F}), (C1, C2), f, p) where S denotes the start of the session,
D the situation where Xiaomei is pierced by the arrow, and X the situation where Damei
gets knifed. Being designated as player 1, Xiaomei’s available actions are to wait (W ) or
run (R). Likewise, Damei’s available actions are to wait or to fire (F ). C1 is the function
which gives the set {W,R} on any input and C2 the function which returns {W,F} on
any input. S being the only value possible as the first argument of f , the matrix in (3.8)
defines f .  S W F

W S X
R X D

 (3.8)

p is defined in (3.9).

p(x) =

{
1 if x = X
−1 if x = D

(3.9)

3.4 Value of Recursive Games

In recursive games, the value of each game state is dependent on the values of the other
game states. Given a game RΓ as specified in (3.7) an assignment vector ~v of values to the
game states in Γ, and a game state γ in Γ \ ΓT , we can define two-player zero-sum game
G(γ,~v) to be

G(γ,~v) = (N, (C1(γ), C2(γ)), λx, y.~v[f(γ, x, y)]) (3.10)

The matrix defining the utility function for this game is the matrix defining transitions
from γ (represented by the function f with γ as the first argument) with each element (a
game state in Γ) replaced by the value assigned to the element by ~v. This game has a
value as discussed in Section 3.2. Since G is defined on the non-terminal states and the
payoff function p is defined on the terminal states, we can compute what the game value
of each state must be assuming that the games states have been assigned the values
specified by ~v. Let F (~v) be the result of that computation. For γ in Γ,

F (~v)[γ] =

{
p(γ) if γ ∈ ΓT

V(G(γ,~v)) otherwise (3.11)

The only way that a value assignment ~v makes sense as a vector of game values for
the game states in Γ is for it to be a fixed point of F , that is, the equation

~v = F (~v) (3.12)

must be satisfied. It turns out that this equation always has a solution, but unfortu-
nately, it can have many solutions.

In [12], Everett proved that every recursive game <Γ has a unique associated vector ~v
indexed by Γ that not only is a fixed point of (3.12), but satisfies other desirable properties.
He called ~v the critical vector for <Γ. He further proved that knowing ~v is not enough in
general to find a strategy such that the expected payoff matches the values in ~v. However,
he did prove that for any ε ∈ R there is a strategy profile σε such that for all γ ∈ Γ, the
expected value of the game at γ is ~v[γ]±ε for any player who plays their respective strategy
in σε. In other words, players can find strategies which will get them arbitrarily close to
the value of the game, but cannot achieve an expected payoff equal to the value of the
game in general. Such strategies are called ε-strategies.

In the case of the Guan sisters, the higher the probability with which both Damei and
Xiaomei choose to wait, the closer the expected value of the game gets to 1 (a win for

8



Xiaomei). However, in the case where both rogues choose to wait 100% of the time, the
game never ends and therefor neither woman wins (so the value of the game is effectively
0).

Thuijsman and Vrieze go a step further in [37] by constructively proving the existence
of such ε-strategies. Iteratively applying

F ′(~v)[γ] =

{
F (~v)[γ] if γ ∈ ΓT

β · F (~v)[γ] otherwise (3.13)

for some β ∈ [0, 1) will eventually converge on some ~vβ. Furthermore, limβ→1 ~vβ = ~v. They
proved that for all ε there exists a β such that N ((N, (C1(γ), C2(γ)), uγβ)) is an ε-strategy
profile for <Γ at γ ∈ Γ \ ΓT where

uγβ(x, y) =

{
~v[f(γ, x, y)] if ~v[f(γ, x, y)] < 0
~vβ [f(γ, x, y)] otherwise (3.14)

3.5 1D Hero vs. Bear as a Recursive Game

As a recursive game, 1D1H1B is

(Γ,ΓT , {h, b}, ({L,R,A}, {L,R,A}), (C,C), f, p) (3.15)

where Γ is the set of all tuples of the form (u, v, x, y) 3−− u, v ∈ N ∧ x, y ∈ Z, ΓT is the set of
all states in Γ matching the descriptions in (2.2), (2.3), and (2.4), C is a function which
returns {L,R,A} on any input, f is the function defined by algorithm 2, and the payoff
function p is defined as such:

p(γ) =

{
1 if γ is a win for the hero
−1 otherwise (3.16)

We have determined that the game value vector ~v for this game is

~v[(u, v, x, y)] =

{
1 if |x| < |y| ∨ (|x| = |y| ∧ u > v) ∨ (|x| > |y| ∧ u > v + 1)
−1 otherwise (3.17)

Possible policies for this game (in geneal, games can have more than one optimal strategy
profile for each game state) are shown in Algorithms 3 and 4.

Algorithm 3 Possible hero policy in 1D1H1B
function HEROACT((u, v, x, y))

if 0 = |x| = |y| ∧ u > v then
return A

else if 0 < |x| < |y| then
return R if x < 0 else L

else if 0 < |x| = |y| ∧ u > v then
return R if x < 0 else L

else if |y| < |x| ∧ u > v + 1 then
return R if x < 0 else L

else
return R if |x+ 1− y| > |x− y| else L

end if
end function
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Algorithm 4 Possible bear policy in 1D1H1B
function BEARACT((u, v, x, y))

if 0 = |y| = |x| ∧ v ≥ u then
return A

else if 0 = |y| < |x| ∧ v ≥ u− 1 then
return A

else if 0 < |y| = |x| ∧ v ≥ u then
return R if y < 0 else L

else if 0 < |y| < |x| ∧ v ≥ u− 1 then
return R if y < 0 else L

else
return R if |y + 1− x| > |y − x| else L

end if
end function

4 Adaptation of Recursive Game Theory

So far we’ve been talking about how to extract a policy for playing to win. In fact, game
theory is entirely premised upon the idea that all players are playing to win. However, our
end goal is not necessarily to create an AI opponent who plays to win, but rather one who
plays to make the game entertaining for the human player. One way to do this is for the
computer to keep the game going by simply thwarting the human’s attempt at winning.
[36, 39]

This goal suggests a type of game analysis that is inspired by Rufus Isaacs’ Differential
Game Theory [18], specifically his analysis of what he called Discrete Differential Games.
Discrete Differential Games are very similar to recursive games in that they consist of
multiple states in which some are terminal. However, these games are limited in that
only one of the players has a choice of action at any given state. Isaacs’ method for
solving these games involves assigning a payoff value of 0 to states in which player 1 wins
the game. He then works backward from terminal states, assigning a value of 1 to states
which are exactly 1 move away from some terminal, 2 to those which are 2 moves away,
and so on and so forth. The end result is that the value of the game at any given state
γ is the time (in combined actions for players 1 and 2) which it will take for player 1 to
win the game. We shall extend this method of analysis for recursive games thusly. For a
given recursive game <Γ, we define p on terminal state γ to be

p(γ) =

{
0 if γ is a win for player 1
∞ otherwise (4.1)

Since this implies that player 1 is now the minimizing player, we shall define a new value
function V ′ on two-player, zero-sum game Γ to be

V ′(Γ) = −V((N, (C1, C2), λx, y.− u(x, y))) (4.2)

We can then define the value of the game to be a fixed point of a new function

T (~v)[γ] =

{
p(γ) if γ ∈ ΓT

1 + V ′(G(γ,~v)) otherwise (4.3)

Rather than representing an exact number of simultaneous rounds required for player 1
to achieve a win, the value of the game at a state γ is the expected number of rounds it will
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take player 1 to win the game playing forward from γ. Note that by using this definition
for the value of the game, player 2 will value playing the game forever equally to winning.

It should quickly become apparent, though, that games with payoffs of ∞ are im-
possible to analyze due to the viral nature of infinity. Hence, we would rather define p
as

p(γ) =

{
0 if γ is a win for player 1
K otherwise (4.4)

for some arbitrary integer K so large that it may be considered a good approximation of
infinity. Using arbitrarily large values in place of infinity in games is not a new concept
[3], however our focus in doing so is different. While Başar and Olsder were concerned
with games that are played for only a finite number of rounds and assumes that all games
are played for K rounds, for us K is simply a very large number that the players may not
know in advance. The players must play as if the game may never end, though player 1
will try to end the game by winning.

We can further normalize the analysis by introducing a step factor δ = 1
K and using

the following function to describe the value of the game

T (~v)[γ] =

{
p(γ) if γ ∈ ΓT

min(1, δ + V ′(G(γ,~v))) otherwise (4.5)

If we also use p such that

p(γ) =

{
0 if γ is a win for player 1
1 otherwise (4.6)

we now get a game where the value at any state γ is in the range [0, 1]. We call these
games Games of Speed - as the structure of such games encourages player 1 to hurry up
and win, and conversely player 2 to do everything possible to slow player 1 down.

As it turns out, there is a formalization more closely related to the original solution
proposed by Everett and constructed by Thuijsman and Vrieze. If we define p as

p(γ) =

{
1 if γ is a win for player 1
0 otherwise (4.7)

we can transform the game into a Game of Survival [8]. This formalization has the natural
interpretation that the value of the game at any state γ is the probability that player 1
will win going forward from γ. Using the constructive algorithm from [37], we can find
ε-strategies for such games, and since the value of the game at any state can never be
smaller than 0 we don’t even need to know the value of ~v for (3.14). This suggests that we
should just pick the largest β < 1 possible and iterate (3.13) to convergence to get values
for the game states.

4.1 Equivalence between Games of Speed and Games of Survival

As it turns out, in the limiting cases of β = 1 and δ = 0, Games of Speed and Games of
Survival are equivalent formalizations. To see this, we will make the strategy-preserving
transformation of subtracting from 1 the value of the game at each state. This, of course,
will change p in a game of speed to

p(γ) =

{
1 if γ is a win for player 1
0 otherwise (4.8)
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which is precisely the definition of p in a Game of Survival. This also gives us a new
function for which to find a fixed point:

T ′(~v)[γ] =

{
p(γ) if γ ∈ ΓT

max(0,V(G(γ,~v))− δ) otherwise (4.9)

To see why the second case of T ′ is as above, let ~v be a fixed point for T , and ~v′ be the
vector which results from subtracing each element of ~v from 1. Then for any γ ∈ Γ \ ΓT ,

~v′[γ] = 1− ~v[γ]
= 1− T (~v)[γ]
= 1−min(1, δ + V ′(G(γ,~v)))
= max(0, 1− (δ + V ′(G(γ,~v))))
= max(0, 1− δ − V ′(G(γ,~v)))
= max(0, 1− V ′(G(γ,~v))− δ)
= max(0, 1 + V(G(γ,−~v))− δ)
= max(0,V(G(γ,~1− ~v))− δ)
= max(0,V(G(γ,~v′))− δ)
= T ′(~v′)[γ]

(4.10)

where ~1 is the vector of size |Γ| with all its elements set to 1.
Clearly analysis of the game of speed (4.5) and analysis of the corresponding game of

survival (4.9) yield the same strategies. When this game of survival is compared to the
discount factor-based game of survival (3.13), it is clear that they become the same game
of survival as δ goes to 0 and β goes to 1. We expect to be able to find a constructive
proof of the existence of ε-strategies for games of speed along the lines of [37]. This may
prove useful as the subtraction in games of speed is computationally simpler than the
multiplication in games of survival.

According to the results we obtain using an approach derived from [37], the best way
to solve a game of survival is to use a β that is as close to 1 as possible, and the best way
to solve a game of speed is to use the smallest δ possible. These quantities are limited
by machine accuracy considerations; if β is too close to 1, roundoff errors will cause the
computer to do the computation as if β were 1, and if δ is too close to 0, roundoff errors
will cause the computer to do the computation as if delta were 0. In either case, the
strategies that get extracted will not be suitable, as illustrated by the situation of the
Guan sisters in Section 3.3. We will do an analysis, both theoretical and empirical, to
find the most suitable values for β and δ based on numerical analysis techniques.

4.2 Game Theory of Lowered Expectations

In a two-player, zero-sum game, all Nash Equilibria are payoff-equivalent; so in theory a
player should be indifferent as to which Equilibrium strategy to choose when more than
one exists. However, there are cases where one Equilibrium strategy would be better
than another in the case of an opponent making a mistake. Such strategies are called
subgame perfect. Related to these situations are ones where it is impossible for a player
to win when his/her opponent is playing optimally. As such, in this section we introduce
the concept of Game Theory of Lowered Expectations, which is a theory to help a player
make the best of a losing situation.

In an unwinnable situation, a player should still wish to choose strategies which in
some sense push the state of the game closer to a winnable situation. As an example,
we’ll consider Right Turn from section 2.1. As is illustrated in Figure 1, there are only
certain positions from which Thok is guaranteed to capture Lil’ Cal. If he’s not in one of

12



Figure 1: Policy for Thok shown graphically. The red arrows indicate what Thok should
do when he finds himself in those squares. Squares without arrows indicate that nothing
Thok does will lead to capture if Lil’ Cal plays his cards right. The sprites representing
Thok and Lil’ Cal in this figure, along with the background graphic are from [16].
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those squares, Lil’ Cal has a strategy which enables him to always get away. However, it
makes sense that Thok should want to stay as close to Lil’ Cal as possible regardless of
whether or not he’s guaranteed to catch the monkey. Using just the definition of a Nash
Equilibrium and the iterative process, Thok will be given no clue as to what he should
do when not guaranteed a capture. On top of this, when Thok and Lil’Cal are further
apart, Lil’Cal is given no clue as to what he should do either. The game would be more
interesting, and more challenging for Lil’Cal, if he tried to stay as close as possible to
Thok in these situations.

We propose three possibilities for solving this problem:

• α-expanded analysis

• α-expanded cooperative analysis

• β-expanded analysis

The names for these possibilities are tentative, necessary to allow us to talk about them.
In all of these possibilities, the analysis explained in section 3.4 is done on the game,
and the results of that are used in the subsequent ”lowered expectations” analysis in an
attempt to determine policies for states from which the game is unwinnable. Following is
a brief descrpition of each possibility.

4.2.1 Alpha-Expanded Analysis

For a given game <Γ, we will solve the game and obtain some ~vβ. We will now build the
alpha expansion of <Γ, <Γ

α = (Γ,ΓT ∪ X, N,CΩ, C, f, p′) where X = {γ| ~vβ [γ] 6= 0} and

p′(γ) =

{
p(γ) if γ ∈ ΓT

1 otherwise. (4.11)

Solve <Γ
α and employ the resulting policy table.

We tried this during an analysis of Right turn; doing so made absolutely no difference
in the resulting policy table. However, more analysis is necessary to determine whether
or not this is the case in general.

4.2.2 Alpha-Expanded Cooperative Analysis

For a game <Γ, obtain a policy for each non-terminal state in its alpha expansion <Γ
α by

having both players play to maximize the payoff to player 1. One way to do this is to find
the largest payoff in the game matrix. Player 1 plays the row that value is in an player 2
plays the column it is in. Of course, if all the elements of the matrix are zero, this won’t
help, though the values might propagate to other game states.

4.2.3 Beta-Expanded Analysis

For a given game <Γ, we will solve the game and obtain some ~vβ. We will now build
the beta expansion of <Γ, <Γ

β = (Γ,ΓT ∪ X, N,CΩ, C, f, p′) where X = {γ|(∃c1 ∈ C1(γ))(∃c2 ∈
C2(γ))[ ~vβ [f(γ, c1, c2)] 6= 0]} and

p′(γ) =

{
p(γ) if γ ∈ ΓT

1 otherwise. (4.12)

Solve <Γ
β and employ the resulting policy table.
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5 Producing a Program from a Policy Table

One possible application of our approach is that of an offline learner. Using recursive
game theory, we can obtain a program for playing the game in the form of a policy table
- that is, a mapping from each state in the game to a strategy profile for that state. In
practice, however, that table will be very large if at all finite. In this section, we propose
a method for generating the policy table for a finite, tractible portion of a game’s states
to use as input to a classification algorithm. As an example, see Table 1 for a (small)
examaple policy table for 1D1H1B as formalized in Section 3.5.

The analysis this method uses to derive the policy table is inspired by the analysis
of Discrete Differential Games in [18]. We start from some terminal state (or possibly
a collection of such) and progressively work backward, updating our value vector by
resolving states as necessary.

Once we have a policy table, we’d like to use it to generate a program which is both
more compact (the policy table, while finite and tractible, may still be incredibly large
for non-trivial games) and more general (we’d like the AI to have some idea of what to
do in states which don’t show up in the table) while still being a recognizable program
to a human. Classical AI has dealt heavily with inducing generalized programs from
examples. The construction of such algorithms is outside the scope of the dissertation
being proposed here. We will, however, run several of the leading ones on the policy tables
our system produces and compare the results. The following systems will be considered:

1. OC1 [29]

2. C4.5/C5.0 [31]

3. Progol [28]

4. FOIDL [27]

OC1 and C5.0 are two leading decision tree induction systems, and Progol and FOIDL
are two leading Inductive Logic Programming systems. Since we want the program to be
something a human programmer can look at and understand, we reject methods such as
neural networks and as such will not be discussing them.

6 Using forward Search with a heuristic evaluation func-
tion

Another possibility is to allow the game agent to use recursive game theory to make a
decision on the fly about what to do next. Online planning has been studied in the
literature. Examples include [4, 1, 5, 34, 39]. The system we propose in this section
combines some of these available techniques with the theory of recursive games to make
decisions as they are needed.

A recursive game is generated using Algorithm 5, then solved using the iterative pro-
cess. The agent will then follow the strategy it obtains by computing the Nash Equilibrium
for the current state using the value vector obtained from solving the game. The function
h referenced in the algorithm is some heuristic evaluation function which attempts to ap-
proximiate the value of the game at its argument. This h will also be used to provide the
values for the initial vector used in the iterative process. Plenty of work has been done
in constructing heuristic evaluation functions for games [19, 7, 26, 21]. Discussion on
how to derive such a function is outside the scope of this work, so we will just take for
granted its existance. Ideally, this function should be admissible (in the classical sense).
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Table 1: Example policy table for 1d1h1b

State Policy
(1, 0, 0, 0) N/A
(2, 1, 0, 0) ((0, 0, 1), (0, 0, 1))
(3, 1, 1, 0) ((1, 0, 0), (0, 0, 1))
(3, 1, 2, 0) ((1, 0, 0), (0, 0, 1))
(3, 1, 3, 0) ((1, 0, 0), (0, 0, 1))
(3, 1, 4, 0) ((1, 0, 0), (0, 0, 1))
(3, 1, 5, 0) ((1, 0, 0), (0, 0, 1))
(3, 1, 6, 0) ((1, 0, 0), (0, 0, 1))
(3, 1, 7, 0) ((1, 0, 0), (0, 0, 1))
(3, 1, 8, 0) ((1, 0, 0), (0, 0, 1))
(3, 1, 9, 0) ((1, 0, 0), (0, 0, 1))
(3, 1, 2, 1) ((1, 0, 0), (1, 0, 0))
(3, 1, 3, 2) ((1, 0, 0), (1, 0, 0))
(3, 1, 4, 3) ((1, 0, 0), (1, 0, 0))
(3, 1, 5, 4) ((1, 0, 0), (1, 0, 0))
(3, 1, 6, 5) ((1, 0, 0), (1, 0, 0))
(3, 1, 7, 6) ((1, 0, 0), (1, 0, 0))
(3, 1, 8, 7) ((1, 0, 0), (1, 0, 0))
(3, 1, 9, 8) ((1, 0, 0), (1, 0, 0))

We conjecture that, for two distinct admissible heursitics h1 and h2, if h1 dominates h2

then a) the value vectors will converge to ~vβ more quickly if h1 is used rather than h2 for
any β (and likewise for δ) and b) if the strategy profile σh1

resulting from using h1 has a
maximum state value error of ε1 and the strategy profile σh2

resulting from using h2 has
a maximum state value error of ε2, then ε1 ≤ ε2.

Unlike the traditional online algorithms that are used for games such as Chess and
Checkers, in this approach a graph is generated, not a tree. The heuristic evaluation
function is applied to all the nodes in the graph and not just to the leaves of a tree. Itera-
tion is needed to refine these values as one pass may not be enough, where conversely it
is enough in the tree used for turn-based games.

We will run this algorithm on a subset of the games we use in Section 5. We will see
how effectively a few iterations improve the played strategies compared to just using the
heuristic evaluation function once on the states that are one round away from the current
state and solving the resulting matrix game for the current state only. We will also give a
high level recap of what happened during each game. Full play-by-plays will be inlcuded
in the appendices.

7 Related Works

Despite the efforts of researchers such as Sue Epstein [11], who takes an approach based
on Cognitive Science in developing her game player Hoyle, the most effective game playing
programs so far are built on game theoretic principles rather than on imitating human
cognitive processes (cite).

Work has been done in the Reinforcement Learning community, for example Gabor
et al in [14] use an iterative learning process to develop strategies for multi-state games.
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Algorithm 5 Making a recursive game on the fly. OverTimeLimit is abstract, its imple-
mentation will place an upper bound on how long genGame can execute.

function GENGAME(γ)
Q← []
T ← {}
C ← {}
Push(Q, γ)

while ¬Empty(Q) ∧ ¬OverT imeLimit do
curr ← Pop(Q)

for all α ∈ P1Moves do
for all β ∈ P2Moves do

succ← f(curr, α, β)

if succ ∈ ΓT then
T ← T ∪ {succ}

else if ¬Contains(Q, succ) then
Push(Q, succ)

end if
end for

end for

C ← C ∪ {curr}
end while

while ¬Empty(Q) do
curr ← Pop(Q)
T ← T ∪ {curr}

end while

return (C ∪ T, T,N,CΩ, C, f, λx.(p(x) if x ∈ ΓT else h(x)))
end function
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However, such methods tend to be very slow since they have to play many games against
an opponent and a state will be visited no more than once in each game; in fact, only a
small number of states are visited in each game, so it will take a long time for the learned
game state values to converge to the best values.

Traditional planning based on STRIPS [13] and the like in most cases completely
avoids an environment which changes in ways beyond the control of the planning agent.
Even in more recent works such as [34], only changes via force of nature are consid-
ered - there are no other intelligent decision makers changing the environment, let alone
deliberately antagonist ones.

More recently, multi-agent planning systems have dealt with planning in adversarial
situations - however, application of recursive game theory in these systems is notably
absent [9].

Daniel Andersson deals with turn-based recursive games [2], going as far as show-
ing an almost linear-time algorithm for constructing winning strategies. He does not,
however, deal with games of simultaneous movement. The few other papers applying
recursive game theory to games also only deal with turn based games [25].

Every year, AAAI hosts a General Game Playing competition [15]. The goal is to develop
an artificial intelligence which, once given the rules of a game, will play the game. The
class of games used in the competition includes those which have simultaneous move-
ment. While there are many different approaches to constructing general game players
[19, 7, 33, 35, 26, 21, 20, 4], use of recursive game theory may be completely absent.

8 Roadmap

Going forth, we intend to accomplish several goals. We will:

• Expand Section 2 with formalizations for several other games which we’ll use to test
the software described by Sections 5 and 6.

• Present our own constructive proof on the existence of ε-strategies which will be
more practical to use in a software system.

• Attempt to prove the same results about Games of Speed as Everett and Thuijsman
and Vrieze did for recursive games using discount factors. This entails showing that,
for every ε, there is some δ such that an iterative process using (4.5) will converge
to a ~vδ such that using the values in ~vδ to compute a Nash equilibrium at any state
γ will give us an ε-strategy profile for γ. It also involves showing that we’d like the
smallest δ > 0 we can choose when running the iterative process in code.

• Determine, given any n ∈ N, the bounds for β and δ for an n-bit machine such that
the choice of value does not exacerbate rounding errors. Intuitively, the hardware
limit for δ would seem to be 2−n. We would like to prove this lower bound, and to
derive and prove an analagous upper-bound on β.

• Develop the software systems outlined in Sections 5 and 6 of this proposal. Both
sections will be expanded to include technical documentation and formal descrip-
tions of the core algorithms for their respective systems. We will also present and
discuss the results of testing these systems on the games described in Section 2.
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