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Abstract
The differential geometry of smooth three-dimensional surfaces can be interpreted from one of two perspectives:
in terms of oriented frames located on the surface, or in terms of a pair of associated focal surfaces. These
focal surfaces are swept by the loci of the principal curvatures’ radii. In this article, we develop a focal-surface-
based differential geometry interpretation for discrete mesh surfaces. Focal surfaces have many useful properties.
For instance, the normal of each focal surface indicates a principal direction of the corresponding point on the
original surface. We provide algorithms to robustly approximate the focal surfaces of a triangle mesh with known
or estimated normals. Our approach locally parameterizes the surface normals about a point by their intersections
with a pair of parallel planes. We show neighboring normal triplets are constrained to pass simultaneously through
two slits, which are parallel to the specified parametrization planes and rule the focal surfaces. We develop both
CPU and GPU-based algorithms to efficiently approximate these two slits and, hence, the focal meshes. Our
focal mesh estimation also provides a novel discrete shape operator that simultaneously estimates the principal
curvatures and principal directions.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computational Geometry and Object Mod-
eling]: Curve, surface, solid, and object representations; I.3.5 [Computational Geometry and Object Modeling]:
Geometric algorithms, languages, and systems;

1. Introduction

Surface representations are crucial to computer graphics, nu-
merical simulation, and computational geometry. Sampled
representations, such as triangle meshes, have long served
as simple, but effective, smooth surface approximations. The
approximation of a smooth surfaces from a sampled geomet-
ric model, whether explicit or not, requires consistent no-
tions of first-order and second-order differential geometric
attributes, such as principal curvatures and principal direc-
tions [Gri05]. Typically, differential geometric properties are
derived from surface vertices, mesh connectivity, and, occa-
sionally, by considering externally specified vertex normals.
Polynomial patches are also frequently fitted to vertices and
normals and then used to approximate differential surface
properties. These methods can introduce ambiguities and in-
consistencies, resulting in unexpected surfaces. Discrete op-
erators have been also been introduced based on averaging
Voronoi cells [MDSB03, CSM03]. However, no consensus
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Figure 1: A sampled mesh from a smooth surface Σ has two fo-
cal meshes Γ1 (blue) and Γ2 (red), each formed by the loci of the
corresponding principal curvature’s radii.

has been reached on how to guarantee mesh smoothness and
quality [GG06].

Alternatively, the differential geometry of smooth three-
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dimensional surfaces can be interpreted in terms of a pair
of associated focal surfaces. For a smooth surface, its fo-
cal surfaces are formed by the loci of the principal radii of
curvatures (Figure 1). The focal surfaces encapsulate many
useful properties of the actual surface that they correspond
to. Normals of the actual surface are tangent to both fo-
cal surfaces and the normal of a focal surface at the point
of actual surface tangency corresponds to a principal direc-
tion on the original surface. Although the basic theory of
the focal surfaces for smooth surfaces has been well ex-
plored [Koe94,Por94], very little work has been done to use
focal surfaces for computing differential geometry attributes
on discrete geometry.

In this paper, we present a new framework for approx-
imating the focal surfaces of discrete meshes with known
or estimated vertex normals. We employ a novel normal-ray
surface representation, which locally parameterizes the sur-
face normals about a point as rays. We show that neighbor-
ing rays form special ray congruencies due to the geome-
try of focal surfaces: these rays should simultaneously pass
through two slits that rule the focal surfaces and correspond
to the two principal directions. We then develop both CPU
and GPU-based algorithms to efficiently approximate the ray
congruency and, hence, the focal surfaces. Our focal surface
estimation provides a new discrete shape operator that si-
multaneously estimates the principal curvatures and princi-
pal directions.

2. Previous Work

In many computational applications, it is common to approx-
imate smooth surfaces with sampled representations com-
posed of piecewise linear elements having connected bound-
aries. We refer to such models as surface meshes. It has long
been recognized that higher-order geometric attributes are
required to compute accurate shading, reflections, and other
simulations. It is also commonplace for surface meshes to
specify vertex normals separate from the modeling elements.

An objective of discrete differential geometry is to de-
rive higher-order local surface properties that are simulta-
neously consistent with the given sampled surface mesh as
well as some underlying smooth surface. Several efforts
have been devoted to defining consistent differential geo-
metric attributes for surface meshes. Many previous mod-
els are based on Cartan equations, which treat the principal
directions as the orientations where the normal differentia-
tion reaches extrema. In theory, the two principal directions
can be computed by diagonalizing the second fundamental
form. Intensive research has been carried out on estimating
the second fundamental form of mesh surfaces via curvature
tensors estimation using finite differences [Tau95, HP04],
polynomial fitting [Ham93, CP03, GI04], and Voronoi cells
[MDSB03, CSM03].

We present a new approach based on a different differen-
tial geometry entity– focal surfaces. In the literature, these

loci of the reciprocal of the principal curvatures are inter-
changeably referred to as evolutes, caustics, centro-surfaces,
and focal surfaces [Koe94]. Even before the invention of
differential calculus, Huygens recognized that the loci of
a curve’s normal rays provide an enormous wealth of ge-
ometric insights. The focal surfaces alone are sufficient to
characterize all of the signed-distance wavefronts emanating
from the surface, from the surface itself to its Gauss map
at infinity. In fact, the differential geometry of smooth sur-
face can be completely characterized from the perspective
of focal surfaces [Por94,PW01]. Thus, they subsume a wide
range of higher-order properties commonly associated with
surface points [PW06, TRZS04]. Recently, computer vision
researchers have shown that focal surfaces are also closely
related to the caustics of rays [SGN01]. For example, the fo-
cal surfaces of the reflection rays determine the unique dis-
tortions on curved mirrors [YM05]. We extend these insights
of focal surfaces to discrete geometry.

Our key contributions include:

• A focal-surface-based framework for analyzing sampled
geometric surfaces with associated vertex normals.

• A theory relating the normal rays, the focal surfaces, and
the two-slit ray structure.

• A new class of CPU and GPU-based algorithms to esti-
mate discrete differential geometry using focal surfaces.

Before proceeding, we explain our notation. Superscripts,
such as Sx, Sy, and Sz represent the x and y and z component
of S. Subscripts, such as fx and fy, represent the first-order
partial derivatives of f with respect to x and y. Similarly, fxx
refers to the second-order partial derivative of f with respect
to x.

3. Focal Surfaces and Focal Meshes

Traditionally, focal surfaces are modeled in terms of the
principal curvature radii. Given a smooth locally parameter-
ized surface

Σ = S(u,v) = [x(u,v),y(u,v),z(u,v)], (1)

sample points on the two focal surfaces of S can be expressed
as

Γ1(u,v) = S(u,v)− 1
K1(u,v)

N(u,v)

Γ2(u,v) = S(u,v)− 1
K2(u,v)

N(u,v) (2)

where N is the normal at S on Σ, and K1 and K2 are the two
principal curvatures at S on Σ. We call Σ the base surface
and Γ1 and Γ2 the focal surfaces. We assume K1 ≥ K2 and
we use ~f1 and ~f2 to represent the two principal directions at
S. Except for parabolic points and planar points where one or
both principal curvatures are zero, each point S(u,v) on the
base surface is associated with two focal points. Thus, gen-
erally, a smooth base surface has two focal surface sheets,
Γ1(u,v) and Γ2(u,v).
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Figure 2: Generally, smooth surfaces have two focal surfaces (h).
Degeneracies occur at parabolic points (c) where only one of the fo-
cal surface exists, at umbilic points (a) where the focal surface con-
verges into a common point, and at flat points (b), where the local
surface is flat. The four types of focal surfaces can also be modeled
with normal rays: normal rays of umbilic points pass through a sin-
gle point (e); normal rays of flat points are parallel (f); normal rays
of parabolic points intersect along a single line (g); and normal rays
of generic points pass through exactly two parallel lines (h).

3.1. Geometric Properties

Several focal-surface properties relate to the base surface’s
differential geometry. Here, we briefly summarize some of
these properties relevant to this paper. A complete character-
ization can be found in [Por94] and [PW01].

Property 1: Normal Tangency The base surface normal
N is tangent to both focal surfaces at Γ1(u,v) and Γ2(u,v).

Property 2: Principal Directions The normal of the two
focal surfaces Γ1(u,v) and Γ2(u,v) correspond to the two
principal directions of the base surface at S(u,v). In Ap-
pendix A, we sketch a brief proof to Properties 1 and 2. See
also [Do 76] (p. 210 ex. 9).

Property 3: Continuity The focal surfaces of polyno-
mial base surfaces are two degrees less continuous. Thus,
a smooth surface may have focal surfaces that are only C0

continuous.

While the focal surfaces of smooth surfaces are well un-
derstood, little work has been done on estimating focal sur-
faces of surface meshes. This is probably because focal sur-
faces are directly related to the principal curvature direc-
tions. Thus, it is as difficult to compute the focal surfaces as
it is to estimate curvatures along with their associated prin-
cipal directions. A notable exception is the generalized focal
surfaces introduced by Hahmann [HH92, Hah99], which are
similar in spirit to our goals, but different in their approach.
Hahmann’s focal surface notion is developed as parameter-
ized evolutes of uniform distance fields from the surface,
whereas ours is determined by the structural constraints rep-
resented by a piecewise linear (PL) focal mesh.

3.2. Degeneracies

In general, a smooth base surface has two focal surfaces.
However, degeneracies occur at special locations on the base

(a) (b)

Figure 3: A surface can be represented as a manifold of rays. (a)
A smooth surface. (b) The normal ray manifold of the surface. Each
normal ray is marked in red.

surface. For example, at the points where exactly one prin-
cipal curvature is zero, the corresponding focal-mesh point
will lie at infinity (i.e. an assymptote of the focal sheet).
These points lie on the parabolic curves of the surface and
the second focal surface forms a cylindrical axis as shown in
Figure 2(c) and 2(g). There may also exist points where both
principal curvatures are zero. These surfaces are locally flat
(Figure 2(b) and 2(f)) and are non-generic.

Furthermore, points on the base surface can have the same
curvature in all directions. These points correspond to the
umbilics, around which local surface is sphere-like. The fo-
cal mesh formed by vertices around an umblic point can
shrink into a point, as is shown in Figure 2(a) and 2(e). The
presence of umbilic points does not affect our focal-mesh-
based representation; we simply treat each focal point as dif-
ferent vertices on each focal mesh.

It is important to note that for polynomial surfaces their
corresponding focal surfaces are 2 degrees less smooth. This
suggests piecewise linear focal meshes are effective repre-
sentations for focal surfaces. In addition, many higher or-
der smooth surfaces have ridges or valleys, thus, their fo-
cal surfaces cusp in 3D and have only C0 continuity as
shown in Figure 2(h). This indicates that piecewise linear
focal surfaces constructed from discrete meshes are reason-
able choices and they are capable of modeling focal surface
cusps, thus, preserving ridge-valley lines of the base mesh.

4. A Normal-Ray Focal Surface Model

Focal meshes have many appealing properties. However, us-
ing conventional differential geometry, it is equally difficult
to compute focal meshes as it is to compute principal curva-
tures and directions. Many existing discrete shape operators
use different routines to separately compute the curvature
values and the curvature directions. In this section, we pro-
pose a unified tool that simultaneously estimates the prin-
cipal curvatures and directions, as well as the focal meshes
from a sampled surface.

Our method is based on the observation that the vertices
and normals of the original surface can be represented as
rays, where each ray has its origin at a vertex and direc-
tion given by its normal. A continuous surface can then be
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Figure 4: Estimating focal meshes using the normal ray model. (a)
We orient the local frame to align z = 0 plane (uv plane) with the
surface tangent plane at P. (b) We choose the second plane to be z =
1 (st plane). Each neighboring normal ray can be parameterized by
its intersections with the two planes as [σ,τ,u,v]. (c) Focal surfaces
(curve) formed by the foci of the normal rays of a parabolic surface.
(d) Neighboring normal rays are constrained by the slits (red) that
rule the focal surfaces (blue).

mapped to a 2D manifold of rays, as is shown in Figure 3(b).
The Normal Tangency Property reveals that focal surfaces
are formed by the envelop of the normal rays as shown in
Figure 4(c). Thus, locally, focal surfaces can alternatively be
viewed as the foci of nearby normal rays.

In geometric optics, the ray foci sweep out the caustics of
reflective or refractive surfaces [SGN01, YM05]. Our goal
is to develop a new technique to robustly estimate the foci
of discretely sampled normal rays, and hence, the focal sur-
faces. This requires computing the local ray structure in the
ε neighborhood about a specific surface vertex. As follows,
we first present a new normal-ray parametrization and then
show how to compute the foci of normal rays under this
parametrization.

4.1. Normal Ray Parametrization

At each surface vertex P, we orient the local frame to align
z = 0 plane with the tangent plane at P. Thus, the normal
at P corresponds to the z direction as shown in Figure 4(a).
We assume P is the origin of z = 0 plane and we call this
plane the uv plane. We position the second st plane at z = 1
parallel to the uv plane. At each vertex of the surface, we pa-
rameterize neighboring normals by their intersections with
the st and uv plane at [s, t,1] and [u,v,0], as shown in Fig-
ure 4(b). The normal direction D can then be computed as
D = [σ,τ,1], where σ = s−u and τ = t−v. In this paper, we
use [σ,τ,u,v] to parameterize all normal rays.

Under this ray parametrization, each normal ray maps to a
point in a four-dimensional ray space. A patch of the surface

normals maps to a 2D manifold in this ray space. In order
to compute the focal surfaces at each vertex on the mesh,
we examine how nearby normal rays behave on smooth sur-
faces. Notice the local surface is a height field (Monge patch)
z(x,y) under the new parametrization. Hence, the normal ray
direction for every point [x,y,z(x,y)] can be computed as
D = [−zx,−zy,1]. The [u,v] coordinate of the ray can be
computed by intersecting the normal ray with the uv plane
as

[σ,τ,1] = [−zx,−zy,1]

[u,v,0] = P− z ·D = [x + zzx,y+ zzy,0] (3)

4.2. Computing Normal Ray Focus

Traditionally, the foci of rays can be computed using the Ja-
cobian method [SGN01]. Assume each ray can be parame-
terized in (x,y) as r(x,y) = S(x,y)+ λD(x,y), where S rep-
resents the origin of the ray and D represents the direction,
the Jacobian method finds λ for each ray r that satisfies:

∣∣∣∣∣∣

SX
x +λ ·DX

x SX
y +λ ·DX

y DX

SY
x +λ ·DY

x SY
y +λ ·DY

y DY

SZ
x +λ ·DZ

x SZ
y +λ ·DZ

y DZ

∣∣∣∣∣∣
= 0 (4)

We have shown [YM05] that under [σ,τ,u,v] ray
parametrization, the Jacobian method can be alternatively
derived by computing the triangular area formed by the in-
tersections of the three rays r, r + rx, and r + ry on z = λ
plane. When this area goes to zero, the three rays will focus
at a line slit.

Therefore, we set out to find λ that satisfies:

Area(λ) = (5)∣∣∣∣∣∣

u+λσ v+λτ 1
(u+ux)+λ(σ+σx) (v+ vx)+λ(τ+ τx) 1
(u+uy)+λ(σ+σy) (v+ vy)+λ(τ+ τy) 1

∣∣∣∣∣∣
= 0

Notice that Equation (5) is quadratic in λ. Thus, it can be
written as

Aλ2 +Bλ+C = 0 (6)

where

A = σxτy−σyτx, B = σxvy−σyvx− τxuy + τyux

C = uxvy−uyvx (7)

We call Equation (6) the normal-ray characteristic equation.

The two solutions to this quadratic equation correspond to
the foci of the normal rays, and therefore, the focal surfaces.
Furthermore, Equation (6) not only computes the position of
the focal surfaces but also reveals a ruling on the focal sur-
face, as is shown in Figure 4(d). This is because the three
rays focus on two slits that have orthogonal directions. We
show in Appendix B that the directions of the two slits cor-
respond to the two principal direction on the base surface.
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4.3. Characteristic Equation

The characteristic equation (6) computes the depth of the
focal surfaces as λ1 and λ2, where λ1 =− 1

κ1
and λ2 =− 1

κ2
.

Since the coefficients of a quadratic equation must satisfy

λ1 +λ2 =−B
A

, λ1 ·λ2 =
C
A

, (8)

we can directly derive the mean and the Gaussian curva-
ture in terms of the coefficients of the characteristic equation
without solving for λ1 and λ2:

K = κ1κ2 =
1

λ1λ2
=

A
C

2H = κ1 +κ2 =− 1
λ1
− 1

λ2
=

B
C

(9)

Notice at the points whose the Gaussian curvature K is
zero, we must have A = 0 and the characteristic equation
degenerates to a linear equation with at most one solution.
These points correspond to the parabolic points of the base
surface, therefore, only one focal surface exists. If the mean
curvature H is also zero, then we must have A = 0 and B = 0,
and therefore, Equation (6) has no solution. This happens
when the surface is locally flat and has no focal surface. Fi-
nally, we can compute the discriminant ∆ = B2 − 4AC. If
∆ = 0, then the quadratic characteristic equation has double
roots. This indicates the surface has two identical principal
curvatures and the surface point is umbilic.

5. Estimating Focal Surface on Discrete Meshes

The normal-ray characteristic equation (6) reveals that un-
der two plane parametrization, nearby normal rays will pass
through two slits that rule the two focal surfaces and are
parallel to the principal directions. In this section, we show
how to apply the local two-slit model to construct the focal
meshes from discrete mesh surfaces. Our method provides
a discrete shape operator that simultaneously estimates the
principal curvatures and principal directions.

Given a sampled surface with vertex normals, we first map
the local neighborhood about each vertex to normal rays.
Our goal is to fit the optimal two-slit model at each vertex,
where optimality is defined such that the neighboring rays
lie close to the two slits.

Notice, the two-slit structure of normal rays is subject to
the following three constraints. First, the vertex normal and
the two slits should be perpendicular to each other. Second,
the two slits should be perpendicular to each other (since
they correspond to the two principal directions). Finally, the
vertex normal ray should pass through both slits.

To satisfy the first constraint, at each vertex P, we use a lo-
cal [σ,τ,u,v] normal ray parametrization. Thus, the normal
ray γ at P must have ray-space coordinates [0,0,0,0]. We
then compute all normal ray coordinates for all vertex nor-
mals within the 1-ring neighborhood of γ as γi[σi,τi,ui,vi].
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Figure 5: Estimating focal surfaces via normal ray congruency.
(a) Neighboring normal rays around γ should lie close to two slits.
To find the optimal two slits, we can minimize the distance from the
neighboring normal ray γ1 to the slit (b). We can also minimize the
angular difference between γ1 and γ (c).

Next, we parameterize each slit pair that is perpendicular to
the normal ray and parallel to the uv plane as [qx

1,q
y
1,λ1] +

µ[cos(θ1),sin(θ1),0] and [qx
2,q

y
2,λ2]+µ[cos(θ2),sin(θ2),0].

By the second constraint, the two slits must be perpendic-
ular to each other. Thus, we have θ2 = θ1 + π

2 . Finally, to
guarantee that γ passes through both slits, each slit l j should
pass through the origin O j[0,0,λ j] on plane z = λ j , j = 1,2.
Therefore, we can rewrite the two slits as

l1 = [0,0,λ1]+η[cos(θ1),sin(θ1),0] (10)

l2 = [0,0,λ2]+η[−sin(θ1),cos(θ1),0]

Our goal is to find the two slits l1 and l2 where neigh-
boring normal rays γi form an envelop. Recall that l1 and l2
can be equivalently represented in terms of θ1, λ1, and λ2 as
shown in equation (10), we can formulate this optimization
as a least square problem:

min
λ1,λ2,θ1

∑
γi∈1 ring neighbor o f γ

(E2(γi, l1)+E2(γi, l2)) (11)

where E2(γi, l j) measures the closeness between the normal
ray γi to slits l j .

One way to measure E is to compute the intersection point
T of ray γi with z = λ j plane and then calculate the distance
d from T to l j as shown in Figure 5(b). Notice that T = [ui +
λ jσ,vi + λ jτ,λ j], thus, E(γi, l j) can be computed as point-
to-line distance:

E2(γi, l1) = (cos(θ1)(vi +λ1τ)− sin(θ1)(ui +λ1σ))2(12)

E2(γi, l2) = (−sin(θ1)(vi +λ2τ)− cos(θ1)(ui +λ2σ))2

However, λ1 or λ2 can be very large around the parabolic
curves. This could lead to numeric problems when using
classical non-linear optimizations. Therefore, we choose to
measure the angular difference.
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Figure 6: GPU-based Focal Surface Estimation. (a) and (b) are the
geometry and the normal image of the David Head model. (c) and
(d) are the estimated mean and Gaussian curvatures. The red color
on (d) represents the hyperbolic points (K < 0), the blue represents
the elliptic points (K > 0), and the black represents the parabolic
points (K ≈ 0).

Notice that l1, l2 and γ define the principal axes at P. For
each intersection point T on plane z = λ1, we project O1T
onto the second principal direction l2 as O1T ′ as shown in
Figure 5(c). We then measure the angular difference between
γ and PT ′ as

| tanα|= | |O1T ′|
λ1

|= |cos(θ1)(vi +λ1τ)− sin(θ1)(ui +λ1σ)
λ1

|
(13)

Substituting λ1 =− 1
κ1

and λ2 =− 1
κ2

into Equation (13), we
have

E2(γi, l1) = ((uiκ1−σi)sin(θ1)− (viκ1− τi)cos(θ1))
2

E2(γi, l2) = ((uiκ2−σi)cos(θ1)+(viκ2− τi)sin(θ1))
2

(14)

When κi goes to infinity, equation (14) may still cause
similar numerical problems as (12). However, large curva-
tures indicate rapid normal changes across neighboring ver-
tices. for most smooth mesh surfaces, it is rarely the case.
However, nearly flat patches that map to infinite λ often oc-
cur. Thus, we choose to use metric (14) to optimization equa-
tion (11).

To find the optimal {κ1,κ2,θ1}, we use the Levenberg-
Marquardt optimization to minimize equation (11). To avoid
getting trapped in a local minimum, we choose a near opti-
mal initial condition. Notice, given a fixed θ1, equation (14)
is quadratic in κ1 and κ2 and equation (11) has a global opti-
mal solution. Thus, we sample several θ1 and find the corre-
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Focal Surface Estimation Method Voronoi Cell Method [Meyer et al. 03]

low curvature

high curvature

0 0

max =  52.6

min =  -53.3

max =  95.9

min =  -114.6

variance σ2= 131.6
variance σ2= 259.1

Figure 7: The color-coded mean curvature image illustrates that
the focal surface curvature estimation (a) is less sensitive to mesh
connectivity than [MDSB03], especially shown on the wings of
the gargoyle model. Plots (c) and (d) compare the distributions of
mean-curvature estimates using the focal surface algorithm and the
Voronoi edge method.

sponding κ1 and κ2 as the initial conditions and choose the
one with the minimum error.

5.1. GPU-based Approximation

The Levenberg-Marquardt optimization robustly estimates
both principal curvatures and directions. However, it con-
verges slowly and is not suitable for real-time applications.
Here we present a GPU-based implementation that extends
the two slit algorithm for real-time curvature estimation.

Recall that the normal ray characteristic equation (6)
only requires three neighboring rays. Therefore, a triangu-
lar mesh, we can simply solve equation (6) for each triangle
using the three corresponding normal rays at the vertices.
This results in a per-triangle-based estimation of the focal
mesh which maintains the same connectivity as the underly-
ing mesh. Furthermore, if we only need to compute the mean
or the Gaussian curvature, we can directly use the A, B, and
C coefficients of the characteristic equation shown in equa-
tion (9), and the quadratic equation (6) need not be solved.

However, if the mesh is densely triangulated, computing
per-triangle-based focal surfaces can still be very expensive.
Therefore, we present an image-space approximation using
a two-pass GPU algorithm. In the first pass, the geometry is
rasterized into two textures, one storing the position of the
geometry per pixel, the second storing the normal of the ge-
ometry per pixel. At the second pass, we use the fragment
shader to fetch neighboring sets of three pixels from both
textures. We then map them to normal rays under the local
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Figure 8: Left: The estimated min (blue) and max principal cur-
vature direction (red) using our focal surface algorithm. Right: We
compare our method with [CSM03] on different parts of the model.

[σ,τ,u,v] parametrization and solve the corresponding char-
acteristic equation.

The quality of the GPU based algorithm can further be
improved by using the geometry and the normal images of a
surface [GGH02] to achieve a more uniform spatial and an-
gular sampling. In Figure 6, we show the estimated mean and
Gaussian curvature using the geometry image of the David
Head model. However, the GPU-based approach is less ac-
curate than the CPU-based optimization. In particular, since
the focal surfaces can lie very far away from the base surface,
the estimated z values can be very large, and may challenge
the precision and the dynamic range of the GPU’s floating-
point representation.

6. Results and Discussions

We have compared our focal surface approximation algo-
rithm with two popular discrete differential shape operators.
We implemented the Voronoi-edge algorithm [MDSB03]
and a modified version of [CSM03] based on the code of
[All].

Accuracy. We compare both simple analytical surfaces
and complex 3D models. For simple analytical surfaces
such as the torus, we find all three methods perform well,
although [MDSB03] generates a slightly better estimates.
On complex models such as the gargoyle, the focal sur-
face method performs best in the sense that it gives the
smoothest and most consistent estimations of the principal
curvatures, as shown in Figure 7. Notice, at the rings on
the wing of the gargoyle, [MDSB03] generates discontinu-

(a) (b) (c)

High

Low

Figure 9: Estimating curvatures on noisy meshes. We apply the
focal surface algorithm on a dense Buddha model with over 1M tri-
angles (a) and estimate the mean curvature field (b). The quality of
the estimation can be further improved by applying the optimization
to a two-ring neighborhood of rays (c).

ous and noisy mean curvatures. Our method produces much
smoother mean-curvature estimates. In Figure 7(c), we plot
the range of the estimated mean curvatures using both meth-
ods for comparison. Our estimates lie in a narrower band
than Meyer’s method. This is because the Voronoi edge ap-
proach relies heavily on the connectivity of the mesh and
uses only vertex positions while our method uses both ver-
tex position and normals and does not require connectivity
constraints. We also compared our principal direction esti-
mation with [CSM03] on the head model of Michelangelo’s
David, which consists of 25K vertices and 50K faces. In Fig-
ure 8, we plot the estimated principal directions. Both meth-
ods generate reasonably smooth principal direction fields, al-
though ours is smoother in areas of high curvature and in hy-
perbolic regions, such as the eye, the hair, the chin, and the
neck regions.

Speed. The performance of the ray-foci estimation algo-
rithm depends mainly on the size of the data and the valence
of the vertices. Compared with the Voronoi edge methods,
our CPU-based algorithm is slower because it requires non-
linear optimization to find the optimal two slits. On a Dell
Precision PWS670 with 3.2 GHz CPU, we experienced com-
putation times of 0.66 millisecond per vertex when applying
the Levenberg-Marquart optimization to the gargoyle model
(Figure 7) with 100K faces and an average valence of 6. The
Voronoi cell method [MDSB03] takes 7 seconds to complete
while ours takes 60 seconds (33 seconds in non-linear op-
timization and 27 seconds in mesh processing). In the ex-
ample of computing principal directions on the David Head
model, our algorithm took 16 seconds whereas the Voronoi-
edge method [CSM03] takes about 2 seconds. Our GPU-
based focal surface estimation, however, is highly efficient.
On an NVidia GeForce7800, our algorithm achieves 105 fps
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Mean Curvature Gaussian Curvature

Ground Truth

perturb vertices 

        +/- 10%

perturb normals 

           +/- 5%

Figure 10: Top row: the ground truth mean and Gaussian curvature of a helix, a pear-shaped surface, and a torus. Mid row: we perturb
the vertices of each model by ±10% but keep the original normals. Bottom row: we perturb the normals of each model by ±5% but keep the
original vertices. Our focal surface approximation algorithm robustly estimates the curvature fields despite the high noise level in both vertices
and normals.

for computing the Gaussian and mean curvature and 70 fps
for the focal surfaces on the David Head model with an im-
age resolution of 512x512.

Robustness. One limitation of our work is that our fo-
cal surface estimation algorithm requires the vertex normals.
For analytical surfaces, we associate exact normals at each
vertex. For scanned surfaces, we approximated the normal
at each vertex by averaging the face normals of the triangles
sharing the vertex. Although more sophisticated normal esti-
mation algorithm such as [Max99] could be used, we found
that simple schemes were sufficient in our experiments. We
have also observed that we can improve the smoothness of
the estimated curvature fields by optimizing all normal rays
over a 2-ring neighborhood of each vertex as shown in Fig-
ure (9).

We have tested how noisy vertices and normals affect the
quality of our estimation. In Figure 10, we perturb both the
vertices and the normals with random noises. Our method
is able to produce smooth and accurate Gaussian and mean
curvature fields despite high noise levels. We have also found
our method is more sensitive to noise in normals than in ver-
tices.

Finally, the quality of our focal-surface-based estimation
does not rely on mesh connectivity. This can be particu-
larly important when approximating curvatures on complex
models with noisy vertex connectivity, such as the Gargoyle
model. In our experiment, Voronoi cell algorithms can be
sensitive to mesh connectivity especially in regions where

the concavity or the convexity of local surfaces flip due to
triangulation. For example, around the rings of the gargoyle
model, the estimated mean curvatures can flip signs across
the neighboring triangles using [MDSB03] as shown in Fig-
ure 7 whereas our method maintains consistent curvature
fields under the same triangulation.

7. Conclusions and Future Work

We have presented a new framework to interpret the dif-
ferential geometry of smooth three-dimensional surfaces in
terms of a pair of associated focal surfaces. Focal surfaces
have many useful properties. For instance, the normal of
each focal surface indicates a principal direction of the cor-
responding point on the original surface. We have employed
a novel normal-ray surface representation, which locally pa-
rameterizes the surface normals about a point as rays. We
have shown how to construct consistent piecewise linear fo-
cal surfaces by computing the congruency of normal rays
from a discrete mesh. We have developed both CPU and
GPU-based algorithms to efficiently approximate the ray
congruency and hence, the focal meshes.

Our focal surface estimation provides a new discrete
shape operator that simultaneously estimates the principal
curvatures and principal directions. We have observed that,
starting from the same mesh without vertex normals, our
focal-surface-based algorithm computes smoother principal
curvature and principal direction fields than the Voronoi cell
approaches [MDSB03,CSM03]. This is because our method
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imposes a stronger differential geometry constraint, i.e., the
consistency of the focal surface, a higher-order differential
attribute than the normals and the vertices.

In the future, we plan to explore how to use the estimated
PL focal surfaces to model smooth surfaces. We also plan to
compare our method with the recently proposed integral in-
variants algorithm [YLHP06] and the midedge normal shape
operator [GGRZ06]. Finally, we would like to investigate
how to use focal surfaces to fix vertex normals of scanned
surfaces.
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Appendix A: Proof To Property 1 and 2

To prove Property 1 and 2, we compute the derivative of
Γ1 along the first principal direction ~f1:

D~f1
Γ1 = D~f1

S− 1
K1

D~f1
~N +

1
K2

1
D~f1

(K1)~N (15)

= ~f1− 1
K1

K1~f1 +
1

K2
1

D~f1
(K1)~N =

1
K2

1
D~f1

(K1)~N

Since D~f1
Γ1 is tangent to Γ1, ~N must be tangent to Γ1. Sim-

ilarly, ~N is also tangent to Γ2.

Next, we compute the derivative of Γ1 along the second
principal direction ~f2:

D~f2
Γ1 = D~f2

S− 1
K1

D~f2
~N +

1
K2

1
D~f2

(K1)~N (16)

= ~f2− 1
K1

K2~f2 +
1

K2
1

D~f2
(K1)~N

Thus, D~f2
Γ1 is a linear combination of ~N and the second

principal direction ~f2. Since D~f2
Γ1 and ~N are both tangent to

Γ1, ~f2 must also be tangent to Γ1. Furthermore, since ~N, ~f1,
and ~f2 form a frame, ~f1 must be the normal of Γ1. Similarly,
~f2 must be the normal of Γ2.

Appendix B: The Slits and the Principal Directions
Lemma 1. Each slit l derived from the ray characteristic
equation (6) is tangent to its corresponding focal surfaces
Γ.

Proof. To compute the direction of l, we first intersect the
three generator rays r, r + rx, and r + ry with z = λ plane,
where λ is the solution to equation (6). The three intersection
points can be computed as:

T1 = [u+λσ,v+λτ,λ] (17)

T2 = [(u+ux)+λ(σ+σx),(v+ vx)+λ(τ+ τx),λ]

T3 = [(u+uy)+λ(σ+σy),(v+ vy)+λ(τ+ τy),λ]

Since λ corresponds to the depth where T1, T2, and T3 lie
on a line, we only need to use two of them to compute the
direction of l. Without loss of generality, assume T1 and T2
do not coincide, the direction of l is

T2T1 = [ux +λσx,vx +λτx,0] (18)

To prove direction T1T2 is the tangent direction of Γ, we
show the two tangent directions, ~Γx and ~Γy, and T2T1 are
co-planar. We compute the determinant of [~Γx, ~Γy,T2T1]T as:

∣∣∣∣∣∣

ux +λxσ+λσx vx +λxτ+λτx λx
uy +λyσ+λσy vy +λyτ+λτy λy

ux +λσx vx +λτx 0

∣∣∣∣∣∣
(19)

It is easy to verify that equation (19) is the same to the LHS
of equation (5). Since the ray characteristic equation is zero
for λ on the focal surface, equation (19) must also be zero.
Therefore, T2T1 must be tangent to Γ.

Lemma 2. The slits l1 and l2 derived from the ray charac-
teristic equation (6) are perpendicular to each other.

Proof. Assume λ1 and λ2 are the two roots to the ray char-
acteristic equation (6). We intersect the three generator rays
r, r + rx, and r + ry with z = λ1 plane at P1, P2 and P3 and
with z = λ2 plane at Q1, Q2 and Q3. The directions of l1 and
l2 can be computed as:

~d1 = P2−P1 = [ux +λ1σx,vx +λ1τx,0]
~d2 = Q2−Q1 = [ux +λ2σx,vx +λ2τx,0] (20)

Next, we show ~d1 · ~d2 = 0.

By modeling the local surface around S as a Monge patch
z(x,y), we can compute the [σ,τ,u,v] coordinate for each
normal ray using equation (3) as

[σ,τ,1] = [−zx,−zy,1]

[u,v,0] = [x + zzx,y+ zzy,0] (21)

Since under our parametrization, S is the origin of the frame
and the normal at S is the z axis, we must have

x = y = z = zx = zy = 0

σx =−zxx,τx =−zxy,ux = 1,vx = 0 (22)

Substituting equation (22) into ~d1 · ~d2, we have

~d1 · ~d2 = (1−λ1zxx)(1−λ2zxx)+λ1λ2z2
xy (23)

Furthermore, we can compute the Gaussian and the Mean
curvature of the Monge patch as:

K =
zxxzyy− z2

xy

(1+ z2
x + z2

y)2 = zxxzyy− z2
xy (24)

2H =
(1+ z2

x)zyy +(1+ z2
y)zxx−2zxzyzxy

(1+ z2
x + z2

y)
3
2

= zxx + zyy

Since λ1 =− 1
κ1

and λ2 =− 1
κ2

, we have

λ1 +λ2 =
1
κ1

+
1
κ2

=
2H
K

=
zxx + zyy

zxxzyy− z2
xy

(25)

λ1λ2 =
1

κ1κ2
=

1
K

=
1

zxxzyy− z2
xy

Finally, substituting equation (25) into equation (23) gives
~d1 · ~d2 = 0. Thus, the two slits must be perpendicular to each
other.

Lemma 2 reveals that the two slits and the normal are per-
pendicular to each other. Furthermore, by Lemma 1 and the
Normal Tangency Property, l1 and N are both tangent to Γ1,
therefore, l2 must be the normal direction of Γ1. Similarly,
l1 must be the normal direction of Γ2. Thus, by the Principal
Direction Property, l1 and l2 must correspond to the principal
directions.
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