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Abstract
In this paper we propose a new framework to simulta-

neously segment and register lung and tumor in serial CT
data. Our method assumes nonrigid transformation on lung
deformation and rigid structure on the tumor. We use the B-
Spline-based nonrigid transformation to model the lung de-
formation while imposing rigid transformation on the tumor
to preserve the volume and the shape of the tumor. In par-
ticular, we set the control points within the tumor to form a
control mesh and thus assume the tumor region follows the
same rigid transformation as the control mesh. For segmen-
tation, we apply a 2D graph-cut algorithm on the 3D lung
and tumor datasets. By iteratively performing segmenta-
tion and registration, our method achieves highly accurate
segmentation and registration on serial CT data. Finally,
since our method eliminates the possible volume variations
of the tumor during registration, we can further estimate
accurately the tumor growth, an important evidence in lung
cancer diagnosis. Initial experiments on five sets of pa-
tients’ serial CT data show that our method is robust and
reliable.

1. Introduction
Lung cancer is the fist most common cause of can-

cer death in men, and the second most common cause in
women, according to the 2004 world health report of the
World Health Organization (WHO). It causes 1.3 million
annual deaths worldwide in 2006. Early detection of lung
cancer can significantly improve the long-term health of
those diagnosed with it. Methods that allow early detection
of lung cancer, such as the helical low-dose CT (Computed
Tomography) scan, x-ray, and bronchoscopy, are of value
in the identification of incurable metastatic cancer, as well
as small cancer that can be cured by surgical resection and
prevention of widespread. Since the late 1990s, there has
been a great deal of interest in using helical CT as the pri-
mary screening modality for lung cancer detection, due to

its affordable cost and high-resolution.

A patient who presents abnormality on CT scans can be
diagnosed with lung cancer, or other nonmalignant diseases
like tuberculosis, pneumonia, or sarcoidosis, etc. Growth
patterns of lung abnormality in serial CT images have been
proven to be a significant indicator of lung cancer. If a
growth of 1cm or larger is detected for a lung nodule smaller
than 3cm, this nodule is at a high risk of developing lung
cancer [4]. On the other hand, a nodule that has not demon-
strated an increase in diameter during a follow-up period of
2 years is almost certainly non-cancerous [3].

Computer-aided diagnosis (CAD) with CT data [10, 5, 2]
can increase the radiologist’s efficacy and provide more ac-
curate diagnosis for lung cancer. Such procedures often
consist of segmentation of CT scan of lung, and intrapul-
monary structures, identification of nodule candidates, and
registration of serial images, etc. Registration aligns two
images scanned at different times spatially, while segmenta-
tion specifies the spatial domain of nodule or lung. Accurate
registration and segmentation leads to accurate computation
of nodule growth [9, 6]. Therefore, CAD techniques are
also important in detecting and measuring nodule growth.

There are multiple challenges in both registration and
segmentation of serial lung CT data.First, for Ground
Glass Opacity (GGO) nodules, the low contrast and fuzzy
margins make accurate segmentation of GGO very hard.
Second, the usually long duration (one year for example)
and the different conditions between two sets of CT scans
cause large nonrigid deformation of lung, and intensity dif-
ferences within the same tissue. Both of these create prob-
lems for accurate registration and segmentation.Third, the
large data size of high-resolution CT scanning can cause
problems for 3D registration or 3D segmentation, due to the
need of significant memory and computational resources.
Fourth, general nonrigid registration may change not only
the shape but also the volume of lung tumors, because of
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the possibly large nonrigid deformation of the lung in se-
rial data, as well as the higher similarity between intensi-
ties of the same nodule before and after growth (see Fig.
1). Similar phenomena have been reported in the litera-
ture when measuring breast tumors in Magnetic Resonance
Imaging (MRI) [13]. It is worth noting that changing the
shape and the volume of lung tumor due to inaccurate reg-
istration might lead to significant errors to the measurement
of tumor growth.

(a) (b) (c) (d)
Figure 1.Demonstration of importance of using rigid transforma-
tion to align same tumor in serial lung CT data. (a) A small tumor
detected during the initial CT scan. (b) A larger tumor detected
during a follow-up CT scan. (c) The overlapping result of a non-
rigidly aligned small tumor and the large tumor. (d) The overlap-
ping result of the rigidly aligned small tumor and the large tumor.

In this paper, we propose a new framework to simulta-
neously segment and register lung and tumor in serial data.
Our method assumes non-rigid transformation for lung de-
formation and rigid structure for the tumor, to preserve the
volume and the shape of the tumor during the registration.
For segmentation, we apply a 2D graph-cut algorithm on
the 3D lung and tumor. For registration, we use a B-Spline-
based nonrigid transformation [12][11] to model the lung
deformation, while imposing rigid transformation on the tu-
mor by setting the control points within the tumor to form
a control mesh. We then simultaneously compute the seg-
mentation and registration via a joint optimization. Such a
joint optimization has been shown in the literature to have
better performance than computing the segmentation and
registration independently [16, 14]. We also observe that
more accurate segmentation and registration of lung and tu-
mor can be obtained using our algorithm.

The key contribution of our method can be summarized
as follows. (1) It is the first attempt where two different
transformations are applied on a tumor and a lung in CAD
of lung cancer, i.e., a rigid transformation on the tumor and
a nonrigid deformation on the lung. (2) It is simple and effi-
cient for integrating rigid and nonrigid transformations. (3)
It solves the segmentation and registration simultaneously
in a joint optimization framework.

2. Problem Statement and Algorithm
Overview

Given two volumesV1 andV2 of serial lung CT data,
which are respectively scanned before and after the nodule’s
growth, our goal is to find the correspondence mappingT

that warps every voxel in the lung ofV1 to the space ofV2,
as well as to find the segmentationS of lungs and nodules.
Here,S = {Sl1,Sl2,Sn1,Sn2} represents lungs’ and nod-
ules’ segmentation inV1 andV2, respectively. The tumor
growth can be computed from the nodules’ segmentations
Sn1 andSn2.

The transformationT consists of a global transformation
Tg and a local transformationTl, i.e.,

T = Tg + Tl. (1)

The global transformation will be computed first in a
general way by minimizing the dissimilarity measure be-
tween the transformed volume ofV1 andV2. After that, we
compute volumeV ′

1 by employing the estimation ofTg on
V1.

We cast the estimation of local transformation as amax-
imum a posteriori(MAP) estimation ofTl andS, givenV ′

1

andV2, as in [16], i.e.,

Tl, S = arg max
Tl,S

P(Tl, S|V ′
1 , V2). (2)

A two-step optimization algorithm similar to [16] is ap-
plied to solve this equation (2):

1. Segment the lungs and nodules inV ′
1 as initial estimate

S′ of S.

2. Repeat the following steps until convergence:

(a) ComputeT ′l = arg maxTl
P(Tl|S′, V ′

1 , V2)
(b) ComputeS′ = arg maxS P(S|T ′l , V ′

1 , V2)

We need to note thatS contains segmentations of the
lung, nodule and other tissues, andTl is the integration of
the rigid transformation on nodule,Tlr, and the nonrigid
deformation on lung,Tln.

The global transformation is represented by a rigid
model, which is determined by rotationsα, β, andγ and
translationsδx, δy andδz relative to axisx, y, andz, respec-
tively. The parameters in the model are estimated by mini-
mizing the Sum of Squared Differences (SSD) between the
globally transformed volume ofV1 andV2. Gradient decent
optimization can be used to get a local minimum, which is
enough for aligning the volumes globally.

The local transformation is represented by the integra-
tion of rigid transformation on nodule,Tlr, and nonrigid
transformation on lung,Tln, in which the latter is repre-
sented by a B-spline based free-form deformation (FFD)
[12].

The segmentation of 3D lung and tumor is accomplished
by using a graph-cut [15] based 2D segmentation algorithm.
The estimation of local transformation and segmentation of
nodule, lung and other tissues are performed simultaneously
by interleaving them. They can benefit from each other, and
more accurate results can therefore be produced.



3. Registration Using Segmentations of Lung
and Nodule

This section describes the details of step 2(a) in the opti-
mization algorithm of equation (2).

We use nonrigid registration for the lung to account for
its complicated deformation, and at the same time treat lung
nodule as a rigid structure. Our approach has several advan-
tages:First, shape and volume of nodule in registration will
be preserved;Second, the lung deformation can be effec-
tively represented using nonrigid deformation;Third, the
nodule’s position can be mapped accurately fromV ′

1 to V2

because of the guiding of nonrigid registration of the lung
during the registration process. All of the advantages can
lead to higher accuracy in nodule growth computation.

A number of methods can be found related to embedding
rigid structures in the nonrigid deformation field during the
registration process. They can be classified into three meth-
ods. Thefirst method is based on point interpolation tech-
nique together with a weighting of the deformation accord-
ing to a distance function [8]. Thesecondmethod is based
on the fact that the Jacobian matrix at a location is orthogo-
nal if its transformation is locally rigid [7], or the determi-
nant of Jacobian matrix is equal to one if it is locally incom-
pressible [11]. The third method enforces coupled control
points having the same displacements [13], in which only
the control points related to the rigid structure are coupled.
We note that in [13] the transformation of the whole volume
is composed of a global transformation and local deforma-
tion, and the rotations of the rigid structures are assumed to
be totally accounted for in the global rigid transformation,
i.e., there are only displacements and no rotations for the
coupled control points. Our approach is closer to the third
kind of methods of integrating rigid structure in nonrigid
registration, which will be detailed below. In particular, the
differences between the method in [13] and our method will
be extensively compared in the end of Section 3.2.

3.1. Transformation Models

We use the same rigid transformation model for the
segmented nodule, as the global transformation model ex-
plained in section 2.

For the local deformation of lung, we use the B-spline
based FFD [12]. The FFD can be written as the 3-D tensor
product of 1-D cubic B-splines as follows

Tln(x, y, z) =
3∑

h=0

3∑
m=0

3∑
n=0

Bh(u)Bm(v)Bn(w)φi+h,j+m,k+n (3)

whereφ denotes mesh of control points,i, j, andk denote
the indices of the left-upper-rearer most control point of the
4 × 4 × 4 control points around(x, y, z) for interpolation,

Bh represents thehth B-spline basis function. More details
related to the specification of(i, j, k) and expressions of the
B-spline basis functions are referred to [12].

3.2. Integration of the Rigid and Nonrigid Trans-
formations

The integration of rigid transformation of the segmented
nodule and nonrigid transformation of lung is used to rep-
resent the local transformation fromV ′

1 and V2, in order
to keep the volume and shape of nodule inV ′

1 unchanged
while attaining high alignment accuracy during the process
of registration.

To do so, we use four techniques.First, the control
points which are located in the domain of the segmented
nodule are coupled, and the same rigid transformation is as-
sumed for them.Second, the transformation of voxels in the
segmented nodule is obtained directly by using the current
estimated rigid transformation matrix, instead of interpolat-
ing the related control points.Third, transformations of the
voxels not in the nodule will be computed by interpolation
of control points’ motions as in equation (3). Note that some
of the coupled control points are possibly used in interpo-
lation. Their motions are computed directly with the rigid
transformation matrix currently estimated for nodule.Fi-
nally, a regularization term is added to impose smoothness
in transformation.

We also keep most of the control points in the back-
ground fixed, and move only the control points in the small-
est bounding box of the currently segmented lung plus two
control points along each direction outside the box, in order
to save computational time, as shown in Fig.2. In addi-
tion, only the voxels within the box larger than the smallest
bounding box for half precision of control points along each
direction (denoted as the space byΩ1), i.e. the area within
the yellow rectangle in Fig.2, will be transformed in order
to save computational time.

Our method differs with [13] in several ways.First, we
enforce a same rigid transformation on the coupled control
points, while the same displacements are imposed on the
coupled control points in [13]. Our method can fit better for
the case when the rotation of the rigid structure can not be
represented very well by the global rigid transformationTg.
Second, only the control points in the domain of the rigid
structure are coupled in our method, and are enforced by
rigid transformation. In [13], more control points adjacent
to, but outside, the smallest bounding box of the rigid struc-
ture are also coupled in order to guarantee the rigid transfor-
mation of the rigid structure, and thus possibly more voxels
than the rigid structure will be set tobe rigid, as shown in
Fig. 2. In addition, [13] assumes the coupled control points
not in the rigid structure have the same displacements to the
ones in the rigid structure. The assumption is often violated
especially when the former ones are transformed nonrigidly



Tanner’s method Our method
Figure 2. Differences between Tanner’s method [13] and our
method in integrating rigid and nonrigid transformations during
registration. 2D case is shown. Red regions indicate rigid struc-
ture (tumor), blue regions denote nonrigid structure (lung), green
filled circles are coupled control points, black filled circles are un-
coupled control points which can move freely, white filled circles
are fixed control points, and the yellow rectangle shows the region
in which the pixels (in 3D case: voxels) need to be transformed
and used to compute dissimilarities in registration of our method.

by the lung’s deformation. We relax the control points adja-
cent to the rigid structure from rigid to nonrigid transforma-
tion, thus their motions can be more accurately estimated.
This can also bring better results for control points within
the rigid structure, because of their mutual influences by
the smoothing term for transformation in registration.Fi-
nally, in our method, voxels in the rigid structure ofV ′

1 are
transformed directly with the estimated rigid transformation
matrix toV2, and other voxels are interpolated with the cor-
responding control points’ motions, while in the methods of
[13], all of the voxels are transformed by interpolating the
control points.

3.3. Dissimilarity Measure, Smoothness Con-
straints, and Optimization

The main part of lung registration is to find an optimal
smooth transformationT ′l which can transformV ′

1 to best
match withV2. Mathematically, the optimization in step
2(a) of equation (2) can be formulated in more details as
follows:

T ′l = arg min
Tl∈Γ

[dis(V2, V
′′
1 ) + reg(Tl)] (4)

whereV ′′
1 = V ′

1 ◦ Tl means the transformed volume ofV ′
1

by Tl, Γ denotes the space of transformations integrating
rigid transformation on nodule and nonrigid transformation
on lung,dis() means the dissimilarity measure of the two
volumes, andreg() denotes a regularization term which is
used to enforce smoothness on the transformation field.

The dissimilarity measure in equation (4) is defined as
the sum of the squared difference between intensity vectors
and mean intensity vector of corresponding class, as given
next:

dis(V2, V
′′
1 ) =

∑

i∈Ω1

wci
||~I(i)− ~µci

||2 (5)

where~I(i) is the 2-component intensity vector of voxeli in
domainΩ1, which is composed of intensities of the voxel
in V ′′

1 andV2, respectively,~µci
denotes the mean intensity

vector of the segmentation classci of voxel i, || · || means
L2-norm, andwci

is the weight value assigned to voxels of
classci.

The regularization term in equation (4) is computed as

reg(Tl) = (6)∑

(x,y,z)∈Ω1

(Tlxx + Tlyy + Tlzz + 2Tlxy + 2Tlxz + 2Tlyz)

whereTlxx, Tlyy, Tlzz, Tlxy,Tlxz, andTlyz are the squared
second order derivative of the transformations.

4. Segmentation of Lung and Nodule Using
Registration

This section describes step 2(b) in the optimization algo-
rithm of equation (2).

We show the segmentations of lung and nodule will be
more accurate based on bothV ′′

1 and V2 simultaneously
rather than independently, because more information is used
during the process of segmentation. After a new iteration of
the registration, we get the voxels’ updated correspondences
betweenV ′

1 andV2, which are usually better optimized. The
accurate estimation of correspondences can help improve
the segmentation.

The segmentations of 3D lung and nodule are performed
by using a graph-cut based 2D image segmentation algo-
rithm [15]. The 2D image segmentation algorithm runs
within a rectangle region around the initialized lung or nod-
ule, which is always 20 pixels larger for the lung, or 10 pix-
els larger for the nodule, compared to the respective small-
est bounding box. For the nodule, the bounding box is set
as the combination of tentatively segmented regions of both
small and large nodules in two serial data. The middle slice
will be first segmented by taking the segmentation in the last
iteration as initialization, and then the result is propagated to
the nearest unsegmented neighbor slices as the initialization
for graph-cut based segmentation. The process of propagat-
ing the segmentation to neighboring slices will stop once
the segmented area in a particular slice is below a certain
threshold, such as 10 pixels used for our experiments.

For the 2D segmentation of one slice, the similarity
of intensities in the same class, the spatial smoothness of
class labels, the requirement of segmented boundaries being
close to the high gradient locations, as well as the require-
ment of segmented boundaries to be close to the boundaries
segmented in the neighboring slices are all considered, to
improve the segmentation accuracy.

The segmentation in one slice is performed by minimiz-
ing the following energy function with graph-cut algorithm.



E =
∑

i∈Ω′1

E1(ci) + λ1

∑

<i,j>∈N
E2(ci, cj) +

λ2

∑

<i,j>∈Nd

E3(ci, cj) + λ3

∑

<i,j>∈Nl|n

E4(ci, cj) (7)

where factorsλ1, λ2 and λ3 are used to adjust the rela-
tive importance of the four energy terms,Ω′1 is the domain
to be segmented in the image,N are the neighbor voxels
(4 nearest neighbors in 2D space are used in our experi-
ments),Nd means voxels pair having different segmenta-
tion classes,Nl|n means voxels pair having different seg-
mentation classes, where one class is either lung or nodule.

E1 is used to ensure similarities of intensities in one
class. A Gaussian distribution is assumed for the 2-
components intensity vectors (composed of the intensity
values inV ′′

1 andV2) in each classl, and Gaussian model is
estimated based on the intensity vectors of currently spec-
ified pixels in this class. Thus,E1 is specifically defined
as

E1(ci) = 1− Pr
(
~I(i)|~µci

, ~σci

)
. (8)

where the latter term measures the probability of the inten-
sity vector~Ii of pixel i belonging to classci. The classci

is represented by a Gaussian model with mean~µci
and vari-

ance~σci .
E2(ci, cj) is used for imposing the spatial smoothness of

segmentation, which is simply defined as follows:

E2(ci, cj) = 1− δ(ci − cj) (9)

whereδ is a Kronecker delta function.
E3 obliges the segmentation boundary to locate at places

with high intensity changes, which is defined as follows:

E3(ci, cj) = g
(
‖~I(i)− ~I(j)‖

)
(10)

where the functiong is defined as:

g(ζ) =
1

ζ + 1
. (11)

E4 prevents the segmented boundary from being too far
from the one of the nearest neighbor slice, which is defined
as

E4(ci, cj) = 1− g (β ·Di,j) (12)

whereDi,j is the distance from the center point between
pixel i and pixelj to the boundary of initialized segmenta-
tion, i.e., the obtained segmentation of the nearest neighbor
slice, andβ is a control parameter forDi,j . Note that for
2D segmentation of the starting slice,E4 will not be con-
sidered.

For the starting slice’s initial segmentations, we first
manually segment lung and nodule, second, specifyΩ′1
which is the corresponding domain in one slice ofΩ1 shown
as yellow rectangle in Fig.2, third, manually classify the
segmented lung into lung and interior structures and the
area outside the lung withinΩ′1 into 3 classes with K-Means
algorithm, and finally, use the graph-cut algorithm to re-
fine the segmentation by minimizing the energy function in
equation7.

Different classes are set for pixels in the bounding boxes
of lung and nodule, respectively, for better segmentation.
For the lung, 3 classes are set. For a nodule, it is more com-
plicated due to tumor growth and possible inaccurate align-
ment between small and large tumors. To achieve better
results, we set four classes for the voxels within the bound-
ing box that includes both temporarily segmented small and
large tumors. The four classes represent (1) pulmonary vox-
els for both the volumes, (2) voxels of nodule forV ′′

1 while
lung for V2, (3) voxels of nodule for both the volumes, and
(4) voxels of lung forV ′′

1 while nodule forV2. Some classes
might be eliminated or added during the evolution of simul-
taneous segmentation and registration process. For exam-
ple, the second class should be removed once a small nodule
is aligned completely within the large nodule. We note that
here we use knowledge that the intensities of nodule are al-
ways higher than pulmonary voxels. After the convergence
of the segmentation algorithm, the combination of the sec-
ond and third class are treated as small nodule, and the com-
bination of the third and the fourth class are a large nodule.
After finishing segmentation of each slice with graph-cut,
morphological closing and hole filling operations are used
to fill possible unexpected holes in the segmented regions.

One more thing needs to be noted for the optimization al-
gorithm related to equation (2). For a nodule, the dissimilar-
ity measure expressed by equation (5) and the energy term
E1 determined by equation (8) can be low even when the
small nodule is aligned wrongly to lung parenchyma con-
sidering the possible homogenous intensities for the seg-
mented tumor and lung parenchyma. The wrong alignment
can occur due to the small volume of the nodule and possi-
bly large deformation of the lung. To deal with this prob-
lem, we set a high weight value, e.g. 1, for the nodule, while
very low weight, e.g. 0.1, for the remaining part at the first
iteration. Note that the initial segmentations of the nodule
for the repetitive optimizations are supposed as correct in
terms of location, although the accuracy of nodule’s spatial
extent might be not so high. Thus, the use of high weight
for the nodule can guarantee that the small nodule is aligned
in the large nodule at the beginning of the repetition. Grad-
ually, the difference of weights on nodule and other parts
can be eliminated with the evolution of the registration.



5. Experimental Results

In our experiments, we use the CT volumes acquired
with a Spiral high resolution CT scanner. Our simultaneous
segmentation and registration scheme was tested on 6 vol-
umes of 3 patients, in which 2 volumes of each patient were
scanned with time interval of about 12 months. The size of
each volume is512 × 512 × 331 pixels, and the voxel size
is 0.54× 0.54× 1.0 mm3.

We have performed three experiments to show (1) the
necessity of the usage of nonrigid deformation for lung’s
registration, (2) the improvement of registration and seg-
mentation by interleaving them, and (3) the improvement
of tumor growth computation by enforcing rigid structure
for the segmented nodule while enforcing a nonrigid trans-
formation for lung.

5.1. Necessity of using Nonrigid Deformation for
Lung’s Registration

The lung’s deformation is usually far more complicated
than a rigid transformation. This is also true for our data
sets. The long duration between the two lung scans and
the possibly different scanning parameters at inhalation or
exhalation can complicate the lung’s transformations.

The assumption of nonrigid transformation, other than
rigid transformation, of lung has improved the accuracy of
alignment, which can be seen in experimental results on one
of our subjects as shown in Fig.3. The initial volume is reg-
istered with the follow-up scan volume in our experiments.

Removal of the global rigid transformation has also
helped roughly align the two volumes. It can be confirmed
by comparing the overlapping results in Fig.3 (a) and (b),
before and after applying rigid transformation. The rigid
transformation was computed on the whole volume with-
out any tissue segmentation. Note that the lungs in the two
volumes were manually segmented before performing the
global transformation.

Besides the alignment effect by the global rigid trans-
formation from Fig.3, we can also see from Fig.3 (b) that
the lung in the initial volume is smaller than the second
one. This are mainly caused by the fact that the initial vol-
ume was scanned closer to inhalation while the follow-up
scan volume was scanned closer to exhalation. Therefore,
nonrigid transformation is necessary for aligning these two
lungs accurately.

The improvement by nonrigid transformation in registra-
tion can be observed from the overlapping result in Fig.3
(d) and (f), compared to the case of using only rigid trans-
formation in Fig.3 (c) and (e). In particular, interior struc-
tures of the lung are aligned better after using nonrigid
transformation.

To better show the improvement of alignment by non-
rigid transformation over rigid transformation, we also

(a)

(b)

(c) (d) (e) (f)

(g) (h) (i) (j) (k)
Figure 3.Comparisons between global rigid and local nonrigid
transformations on lung data. (a) and (b) are the overlapping re-
sults of the same lung in initial volume (red) and in the follow-
up scanned volume (grey), before and after applying global rigid
transformation, respectively. For both (a) and (b), the panels from
left to right are the transverse, coronal and sagittal views, respec-
tively. (c) and (d) are respectively the rendering results of the
rigidly transformed lung, and the nonrigidly transformed lung after
removing rigid transformation. The parts within green rectangles
are shown in (e) and (f) respectively. (g) is the lung and nodule
in the follow-up scan volume. (h) and (i) are the overlapping re-
sults of segmented initial nodule on the follow-up scan lung in (g),
aligned by rigid transformation and nonrigid transformation, re-
spectively. For (c), (d), (e), (f), (h) and (i), red color corresponds
to the early-time volume and grey to the later-time volume. (j)
and (k) are the difference maps of the aligned initial lung with the
follow-up scan lung, by rigid transformation and nonrigid trans-
formation, respectively.

show the overlapping results of the transformed initial nod-
ules on the follow-up scan volume, as shown in Fig.3 (h)
and (i). Using rigid transformation only (Fig.3 (h)), the ini-
tial nodule was not even aligned to the region of grown nod-
ule in the follow-up scan volume. Alignment is improved by
using nonrigid transformation, as shown in Fig.3 (i). How-
ever, we notice that there is an about 8mm3 volume change
on the initial nodule after nonrigid transformation, which
indicates the necessity of using the rigid structure to con-
strain the deformation in nodule as proposed in this paper.

Fig. 3 (h) and (i) show the difference maps between the
aligned, initially scanned lung and the follow-up scan lung
using global rigid transformation and nonrigid transforma-
tion, respectively. It can be observed that alignment errors



by nonrigid transformation are obviously smaller than those
by rigid transformation.

5.2. Improvement of Registration and Segmenta-
tion by Coupling them

Next, we demonstrate the registration improvement
through the difference maps of the first iteration and the
third iteration between the transformed image and the target
image, by coupling the registration and segmentation with
the optimization algorithm in section2, as shown in Fig.4.

(a) (b) (c)
Figure 4.Improvement in registration by segmentation. (a) One
slice of the follow-up scan CT volume of lung. (b) and (c) are the
intensity difference maps between the transformed initial scan vol-
ume and the follow-up scan volume in the 1st and the 3rd iteration,
respectively.

Note that, as shown in Fig.4 (b), the inaccurate seg-
mentation leads to large registration error. With better seg-
mentation, the registration error is decreased as shown in
Fig. 4 (c). Although a general nonrigid registration algo-
rithm might result in a better difference map, compared to
Fig. 4 (c), the volume and the shape of the nodule in the ini-
tial scan volume might be changed a lot due to high nonrigid
registration.

To quantitatively evaluate the performance of our algo-
rithm on segmentation, we measure the distance between
automatic segmented boundaries of lung tumors and man-
ual segmentation (similar to [1]). Based on all our testing
samples, the mean error of boundary distances is 3.50 pix-
els.

5.3. Improvement of Tumor Growth Computation

When registering the initial scan volume to the follow-up
scan volume, the volume and shape of nodule in the initial
scan volume can be changed due to the following four fac-
tors if no rigid constraint is placed on nodule: the lung’s
transformation, the precision of control points used in B-
Spline based registration, the size of the nodule, and the ac-
tual tumor growth between the two data sets. These factors
are explained next one by one.First, larger degree of lung’s
transformation between the two datasets can bring in more
errors to the computation of the nodule’s volume.Second,
more dense control points possibly lead to larger changes to
nodule’s volume. With more control points in the nodule,
changes of the nodule’s volume come not only from the de-
formation of the lung, but also the nonrigid mapping from
one nodule to the other as shown in Fig.1. Third, larger size

Resolution 50 30 20 10 5

subject1 13.5 13.3 13.5 20.9 34.7

subject2 6.8 6.3 6.3 19.6 29.5

Table 1.Changes (in percentage) of nodule volume with respect to
the use of different density of control points in B-Spline, when
applying nonrigid registration on the lung without enforcing a
rigid structure for the nodule. The density value, e.g., 50, re-
lates to the resolution of the control points is50× 50× 50mm3.
The nodules sizes are21.2 × 21.4 × 20.6mm3 for subject1, and
15.4× 14.9× 19.2mm3 for subject2.

of a nodule might mean larger changes in nodule volume
in nonrigid registration due to a larger nodule can contain
more control points of the B-Spline.Finally, a larger real
nodule growth might bring larger changes to nodule’s vol-
ume in registration since the deference in nodule of different
times is large.

Our algorithm enforces rigid structure to the nodule, and
therefore, changes to the nodule’s volume by our registra-
tion method only come from errors in segmentation, which
is proven to be very low by experiments. To show the
merits of our algorithm on the tumor growth computation,
we demonstrate in Table1 the percentage of nodule vol-
ume change under nonrigid transformation, with respect to
the use of different density of control points in B-Splines.
Note that manual segmentation of nodules by a well trained
rater is used as ground-truth. Based on our experiments,
the mean and variance of percentages of the nodule volume
variations with our algorithm, caused by errors in segmen-
tation, are 0.8 and 0.6.

Some overlapping results after our segmentation and reg-
istration are also shown in Fig.5. It can be observed that
the nonlinear mappings from the initial scan nodule to the
second scan nodule are accurate, and thus the automatic
measurement of the nodule’s growth property become pos-
sible. Note that, if the nodules are not well aligned, we
can only compute the volume changes, while the different
growth properties of nodule in different directions cannot
be obtained, even after we get the accurate segmentations
for nodules.

Finally, we also provide the rendering results of a lung
and a nodule segmented using our method in Fig.6. The
rendering results for the nodule looks blurred due to its
small size.

6. Conclusions and Future Work

We have presented a new framework to simultaneously
segment and register a lung and a tumor in serial CT data.
Our method assumes the nonrigid transformation for lung
deformation and the rigid structure for tumor. We have
used a B-Spline-based nonrigid transformation to model the
lung deformation, while enforcing the rigid transformation



Figure 5.Overlapping results of our aligned initial scan nodule
with the follow-up scan volume. The left column shows the seg-
mented lung in the follow-up scan volume, while the right column
shows the corresponding overlapping results.

Figure 6.Volume renderings of a lung and a nodule segmented by
our method. Two views are displayed for both lung and nodule.

on the tumor to preserve both volume and shape of the tu-
mor. For segmentation, we have applied a 2D graph-cut
algorithm on the lung and tumor. For registration, we set
the control points within the tumor to form a control mesh
and enforce the tumor region to follow the same rigid trans-
formation as the control mesh. By allowing nonrigid regis-
tration for the lung and rigid registration only for the tumor,
the tumor volume and shape can be preserved during reg-
istration, thus increasing the accuracy of measuring tumor
volume growth as well as tumor growth patterns.

In the future, we plan to design the special features,
other than intensity, for the segmentation of GGO tumors.
GGO-tumor voxels have a hazy appearance within the tu-
mor, thus, the classical intensity-based segmentation meth-
ods may fail. We also plan to design a system for lung can-
cer diagnosis by computing the volume changes of the nod-
ule as well as the different growth patterns, according to the
registration and segmentation results. Finally, tumor growth
can be more accurately estimated, if the inflation and defla-
tion of lung can be obtained and used in registration. In this
case, we might also be able to model the change of nodule
volume due to the inflation and deflation of lung.
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