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Abstract. We present a General Linear Camera (GLC) model that uni-
fies many previous camera models into a single representation. The GLC
model is capable of describing all perspective (pinhole), orthographic,
and many multiperspective (including pushbroom and two-slit) cameras,
as well as epipolar plane images. It also includes three new and previously
unexplored multiperspective linear cameras. Our GLC model is both gen-
eral and linear in the sense that, given any vector space where rays are
represented as points, it describes all 2D affine subspaces (planes) that
can be formed by affine combinations of 3 rays. The incident radiance
seen along the rays found on subregions of these 2D affine subspaces
are a precise definition of a projected image of a 3D scene. The GLC
model also provides an intuitive physical interpretation, which can be
used to characterize real imaging systems. Finally, since the GLC model
provides a complete description of all 2D affine subspaces, it can be used
as a tool for first-order differential analysis of arbitrary (higher-order)
multiperspective imaging systems.

1 Introduction

Camera models are fundamental to the fields of computer vision and photogram-
metry. The classic pinhole and orthographic camera models have long served as
the workhorse of 3D imaging applications. However, recent developments have
suggested alternative multiperspective camera models [4,20] that provide al-
ternate and potentially advantageous imaging systems for understanding the
structure of observed scenes. Researchers have also recently shown that these
multiperspective cameras are amenable to stereo analysis and interpretation [13,
11,20].

In contrast to pinhole and orthographic cameras, which can be completely
characterized using a simple linear model (the classic 3 by 4 matrix [5]), multiper-
spective cameras models are defined less precisely. In practice, multiperspective
cameras models are described by constructions. By this we mean that a system
or process is described for generating each specific class. While such physical
models are useful for both acquisition and imparting intuition, they are not
particularly amenable to analysis.
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In this paper we present a unified General Linear Camera (GLC) model that
is able to describe nearly all useful imaging systems. In fact, under an appropriate
interpretation, it describes all possible linear images. In doing so it provides a
single model that unifies existing perspective and multiperspecive cameras.

2 Previous Work

The most common linear camera model is the classic 3 x 4 pinhole camera matrix
[5], which combines six extrinsic and five intrinsic camera parameters into single
operator that maps homogenous 3D points to a 2D image plane. These map-
pings are unique down to a scale factor, and the same infrastructure can also
be used to describe orthographic cameras. Recently, several researchers have
proposed alternative camera representations known as multiperspective cameras
which capture rays from different points in space. These multiperspective cam-
eras include pushbroom cameras [4], which collect rays along parallel planes from
points swept along a linear trajectory, and two-slit cameras [10], which collect
all rays passing through two lines. Zomet et al [20] did an extensive analysis and
modelling of two slit(XSlit) multiperspective cameras. However, they discuss the
relationship of these cameras to pinhole cameras only for the purpose of image
construction, whereas we provide a unifying model.

Multiperspective imaging has also been explored in the field of computer
graphics. Examples include multiple-center-of-projection images [12], manifold
mosaics [11], and multiperspective panoramas [18]. Most multiperspective images
are generated by stitching together parts of pinhole images [18,12], or slicing
through image sequences [11, 20].

Fig. 1. General Linear Camera Model. a)A GLC is characterized by three rays origi-
nated from the image plane. b)It collects all possible affine combination of three rays.

Seitz [13] has analyzed the space of multiperspective cameras to determine
those with a consistent epipolar geometry. Their work suggests that some mul-
tiperspective images can be used to analyze three-dimensional structure, just as
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pinhole cameras are commonly used. We focus our attention on a specific class
of linear multiperspective cameras, most of which satisfy Seitz’s criterion.

Our analysis is closely related to the work of Gu et al [3], which explored the
linear structures of 3D rays under a particular 4D mapping known as a two-plane
parametrization. This model is commonly used for light field rendering. Their
primary focus was on the duality of points and planes under this mapping. They
deduced that XSlits are another planar structure within this space, but they do
not characterize all of the possible planar structures, nor discuss their analogous
camera models.

Our new camera model only describes the set of rays seen by a particular
camera, not their distribution on the image plane. Under this definition pin-
hole cameras are defined by only 3 parameters (the position of the pinhole in
3D). Homographies and other non-linear mappings of pinhole images (i.e., radial
distortion) only change the distribution of rays in the image plane, but do not
change the set of rays seen. Therefore, all such mappings are equivalent under
our model.

3 General Linear Camera Model

The General Linear Camera (GLC) is defined by three rays that originate from
three points pq(u1,v1), pa(uz2,v2) and ps(us,vs) on an image plane I;,qgc, 88
is shown in Figure 1. A GLC collects radiance measurements along all possible
“affine combinations” of these three rays. In order to define this affine combina-
tion of rays, we assume a specific ray parametrization.

W.o.l.g, we define Il;;,q4. to lie on z = 0 plane and its origin to coincide
with the origin of the coordinate system. From now on, we call II;pqge 8s Ilys.
In order to parameterize rays, we place a second plane ITg; at z = 1. All rays
not parallel to I, Il,, will intersect the two planes at (s,t,1) and (u,v,0)
respectively. That gives a 4D parametrization of each ray in form (s,t,u,v).
This parametrization for rays, called the two-plane parametrization (2PP), is
widely used by the computer graphics community for representing light fields
and lumigraphs [7, 2]. Under this parametrization, an affine combination of three
rays 7;(si, ti, us,v;), ¢ = 1, 2, 3, is defined as:

r=a-(s1,t,u1,v1) + 5 (s2,t2,u2,v2) + (1 —a— B) - (s3,t3,us,v3) (1)

The choice of IIy at z = 1, is, of course, arbitrary. One can choose any
plane parallel to I1,, to derive an equivalent parametrization. Moreover, these
alternate parameterizations will preserve affine combinations of three rays.

Lemma 1. The affine combinations of any three rays under two different 2PP
parameterizations that differ by choice of Igy (i.e., (s,t,u,v) and (s',t',u,v) )
are the same.

Proof. Suppose Il is at some arbitrary depth zg, zg # 0. Consider the transfor-
mation of a ray between the default parametrization (zo = 1) and this new one.
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If r(s,t,u,v) and r(s',t,u,v) represent the same ray r in 3D, then r(s,t,u,v)
must pass through (s',', 2¢), and there must exist some A such that

A (S7ta 1) + (1 - /\) ' (U'a v, 0) = (S/at/a ZO) (2)
Solving for A, we have
s'=s-20+tu-(1—20), '=t-z0+v-(1—2) (3)

Since this transformation is linear, and affine combinations are preserved under
linear transformation, the affine combinations of rays under our default two-

plane parametrization (zp = 1) will be consistent for parameterizations over
alternative parallel planes. Moreover, the affine weights for a particular choice
of parallel 11 ; are general. O

We call the GLC model “linear” because it defines all 2-dimensional affine
subspaces in the 4-dimensional “ray space” imposed by a two-plane parametriza-
tion. Moreover, these 2D affine subspaces of rays can be considered as images.
We refer to the three rays used in a particular GLC as the GLC’s generator
rays. Equivalently, a GLC can be described by the coordinates of two triangles
with corresponding vertices, one located on I, and the second on I1,,. Un-
less otherwise specified, we will assume the three generator rays (in their 4D
parametrization) are linearly independent. This affine combination of genera-
tor rays also preserves linearity, while other parameterizations, such as the 6D
Pliicker coordinates [16], do not [3].

Lemma 2. If three rays are parallel to a plane IT in 3D, then all affine combi-
nations of them are parallel to I as well.

Lemma 3. If three rays intersect a line | parallel to the image plane, all affine
combinations of them will intersect | as well.

Proof. By lemma 1, we can reparametrize three rays by placing Il so that it
contains [ resulting in the same set of affine combinations of the three rays.
Because the st plane intersections of the three rays will lie on [, all affine com-
binations of three rays will have their st coordinates on [, i.e., they will all pass
through [. The same argument can be applied to all rays which pass through a
given point. a

4 Equivalence of Classic Camera Models

Traditional camera models have equivalent GLC representations.

Pinhole camera: By definition, all rays of a pinhole camera pass through
a single point, C in 3D space (the center of projection). Any three linearly
independent rays from C will the intersect II,, and Il planes to form two
triangles. These triangles will be similar and have parallel corresponding edges,
as shown in Figure 2(a). Furthermore, any other ray, r, through C will intersect
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Fig. 2. Classic camera models represented as GLC. (a)Two similar triangles on two
planes define a pinhole camera; (b)Two parallel congruent triangles define an ortho-
graphic camera; (c)Three rays from an XSlit camera.

11, and I planes at points Py, and ¢s. These points will have the same affine
coordinates relative to the triangle vertices on their corresponding planes, and
r has the same affine coordinates as these two points.

Orthographic camera: By definition, all rays on an orthographic camera
have the same direction. Any three linearly independent rays from an ortho-
graphic camera intersect parallel planes at the vertices of congruent triangles
with parallel corresponding edges, as shown in Figure 2(b). Rays connecting the
same affine combination of these triangle vertices, have the same direction as
the 3 generator rays, and will, therefore, originate from the same orthographic
camera.

Pushbroom camera: A pushbroom camera sweeps parallel planes along
a line [ collecting those rays that pass through [. We refer to this family of
parallel planes as IT*. We choose II,, parallel to [ but not containing [, and
select a non-degenerate set of generator rays (they intersect I, in a triangle).
By Lemma 2 and 3, all affine combinations of the three rays must all lie on IT*
parallel planes and must also pass through [ and, hence, must belong to the
pushbroom camera. In the other direction, for any point p on II,,,, there exist
one ray that passes through p, intersects [ and is parallel to IT*. Since p must be
some affine combination of the three vertexes of the uv triangle, » must lie on
the corresponding GLC. Furthermore, because all rays of the pushbroom camera
will intersect IT,,, the GLC must generate equivalent rays.

XSlit camera: By definition, an XSlit camera collects all rays that pass
through two non-coplanar lines. We choose II,, to be parallel to both lines
but to not contain either of them. One can then pick a non-degenerate set of
generator rays and find their corresponding triangles on I and I1,,. By Lemma
3, all affine combinations of these three rays must pass through both lines and
hence must belong to the XSlit camera. In the other direction, authors of XSlit
[10, 20] have shown that each point p on the image plane IT,,, maps to a unique
ray r in an XSlit camera. Since p must be some affine combination of the three
vertexes of the wv triangle, r must belong to the GLC. The GLC hence must
generate equivalent rays as the XSlit camera.

Epipolar Plane Image: EPI [1] cameras collect all rays that lie on a plane
in 3D space. We therefore can pick any three linearly independent rays on the
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plane as generator rays. Affine combinations of these rays generate all possible
rays on the plane,so long as they are linearly independent. Therefore a GLC can
also represent Epipolar Plane Images.

5 Characteristic Equation of GLC

Although we have shown that a GLC can represent most commonly used camera
models, the representation is not unique (i.e., three different generator rays can
define the same camera). In this section we develop a criterion to classify general
linear cameras. One discriminating characteristic of affine ray combinations is
whether or not all rays pass through a line in 3D space. This characteristic is
fundamental to the definition of many multi-perspective cameras. We will use
this criteria to define the characteristic equation of general linear cameras.

Recall that any 2D affine subspace in 4D can be defined as affine combinations
of three points. Thus, GLC models can be associated with all possible planes
in the 4D since GLCs are specified as affine combinations of three rays, whose
duals in 4D are the three points.

Lemma 4. Given a non-EPI, non-pinhole GLC, if all camera rays pass through
some line l, not at infinity, in 3D space, then | must be parallel to II,,,.

Proof. We demonstrate the contrapositive. If [ is not parallel to II,,, and all
rays on a GLC pass through [, then we show the GLC must be either an EPT or
a pinhole camera.

Assume the three rays pass through at least two distinct points on [, other-
wise, they will be on a pinhole camera, by Lemma 3. If [ is not parallel, then it
must intersect ITg, IT,,, at some point (sg,to, 1) and (ug,vg,0). Gu et al [3] has
shown all rays passing through | must satisfy the following bilinear constraints

(u—wug)(t —tg) — (v—1g)(s—809) =0 (4)

We show that the only GLCs that satisfy this constraint are EPIs or pinholes.

All 2D affine subspaces in (s, t,u,v) can be written as the intersection of two
linear constraints A; - s+ B; -t + C; -u+ D; -v+ E; =0, 1 = 1, 2. In general
we can solve these two equations for two variables, for instance, we can solve for
U-v as

u=A\-s+ B -t+E], v=A, s+ B} -t+ Ej (5)

Substituting v and v into the bilinear constraint (4), we have
(Al s+ B, -t+E] —uo)(t—to) = (Ay-s+ By -t + Ey —wvo)(s—s0) (6)

This equation can only be satisfied for all s and ¢ if A] = Bj and B} = A}, =0,
therefore, equation (5) can be rewritten as u = A’ - s+ Ej and v = A’ -t + E}.
Gu et al [3] have shown all rays in this form must pass through a 3D point P
(P cannot be at infinity, otherwise all rays have uniform directions and cannot
all pass through any line [, not at infinity). Therefore all rays must lie on a 3D
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plane that passes through [ and finite P. The only GLC camera in which all rays
lie on a 3D plane is an EPI. If the two linear constraints are singular in « and
v, we can solve for s-t, and similar results hold.

If the two linear constraints cannot be solved for u-v or s-t but can be solved
for u-s or v-t, then a similar analysis results in equations of two parallel lines,
one on Ilg, the other on II,,. The set of rays through two parallel lines must
lie on an EPI. a

Lemma 3 and 4 imply that given a GLC, we need only consider if the three
generator rays pass through some line parallel to Il;;. We use this relationship
to define the characteristic equation of a GLC.

The three generator rays in a GLC correspond to the following 3D lines:

Ty = )\7 . (Si,ti,l) + (1 - Al) . (Uiﬂ}l‘,O) 1= 1,273

The three rays intersect some plane II,_y parallel to IT,, when \; = Ay = A3 =
A. By Lemma 3, all rays on the GLC pass through some line [ on IT,_, if the
three generator rays intersect [. Therefore, we only need to test if there exist any
A so that the three intersection points of the generator rays with IT,_, lie on a
line. A necessary and sufficient condition for 3 points on a constant z-plane to
be co-linear is that they have zero area on that plane. This area is computed as
follows (Note: the value of z is unnecessary):

()\'51+(1—/\)'U1) ()\'t1—|—(1—)\)'1}1) 1
()\~52+(17/\)~u2) ()\'t2+(1*>\)'”02) 11=0 (7)
()\83+(1—)\)U3) (>\t3+(1—>\)’113) 1

Notice equation (7) is a quadratic equation in A of the form

AN 4+B-A+C=0 (8)

where
s1—urt1—v 1 st 1 t1up 1 up v1 1 uy v1 1
A= SQ—UQtQ—’UQl,B: 82U21—t2U21—2‘U2U21,C: UQ’UQI
83—U3t3—’031 831}31 t3U31 U31131 U3’U31

We call equation (8) the characteristic equation of a GLC. Since the charac-
teristic equation can be calculated from any three rays, one can also evaluate the
characteristic equation for EPI and pinhole cameras. The number of solutions of
the characteristic equation implies the number of lines that all rays on a GLC
pass through. It may have 0, 1, 2 or infinite solutions. The number of solutions
depends on the denominator A and the quadratic discriminant A = B2 — 4AC.

We note that the characteristic equation is invariant to translations in 4D.
Equivalently, translations of the two triangles formed by generator rays (s},t;) =
(si + Tsyti + T3), (ul,vl) = (u; + Tu,v; + Ty), @ = 1, 2, 3, do not change the

coefficients A, B and C' of equation (8).
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6 Characterizing Classic Camera Models

In this section, we show how to identify standard camera models using the char-
acteristic equation of 3 given generator rays.

Lemma 5. Given a GLC, three generator rays, and its characteristic equation
A- X2+ B-X+C =0, then all rays are parallel to some plane if and only if
A=0.

Proof. Notice in the matrix used to calculate A, row i is the direction d; of ray
r;. Therefore A can be rewritten as A = (d; X ds) - d3. Hence A = 0 if and
only if dy, ds and d3 are parallel to some 3D plane. And by Lemma 2, all affine
combinations of these rays must also be parallel to that plane if A = 0. ad

6.1 A =0 case

When A = 0, the characteristic equation degenerates to a linear equation, which
can have 1, 0, or an infinite number of solutions. By Lemma 5, all rays are
parallel to some plane. Only three standard camera models satisfy this condition:
pushbroom, orthographic, and EPI.

All rays of a pushbroom lie on parallel planes and pass through one line, as
is shown in Figure 4(a). A GLC is a pushbroom camera if and only if A = 0 and
the characteristic equation has 1 solution.

All rays of an orthographic camera have the same direction and do not all
simultaneously pass through any line [. Hence its characteristic equation has no
solution. The zero solution criteria alone, however, is insufficient to determine
if a GLC is orthographic. We show in the following section that one can twist
an orthographic camera into bilinear sheets by rotating rays on parallel planes,
as is shown in Figure 4(b), and still maintain that all rays do not pass through
a common line. In Section 3, we showed that corresponding edges of the two
congruent triangles of an orthographic GLC must be parallel. This parallelism
is captured by the following expression:

bume) _(0) 5y o ipg ®

We call this condition the edge-parallel condition. It is easy to verify that a GLC
is orthographic if and only if A = 0, its characteristic equation has no solution,
and it satisfies the edge-parallel condition.

Rays of an EPI camera all lie on a plane and pass through an infinite number
of lines on the plane. In order for a characteristic equation to have infinite number
of solutions when A = 0, we must also have B = 0 and C' = 0. This is not
surprising, because the intersection of the epipolar plane with ITg; and IT,,
must be two parallel lines and it is easy to verify A =0, B =0 and C = 0 if
and only if the corresponding GLC is an EPI.
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6.2 A # 0 case

When A # 0, the characteristic equation becomes quadratic and can have 0, 1,
or 2 solutions, which depends on the characteristic equation’s discriminant A.
We show how to identify the remaining two classical cameras, pinhole and XSlit
cameras in term of A and A.

All rays in a pinhole camera pass through the center of projection (COP).
Therefore, any three rays from a pinhole camera, if linearly independent, cannot
all be parallel to any plane, and by Lemma 4, A # 0. Notice that the roots of
the characteristic equation correspond to the depth of the line that all rays pass
through, hence the characteristic equation of a pinhole camera can only have one
solution that corresponds to the depth of the COP, even though there exists an
infinite number of lines passing through the COP. Therefore, the characteristic
equation of a pinhole camera must satisfy A # 0 and A = 0. However, this
condition alone is insufficient to determine if a GLC is pinhole. In the following
section, we show that there exists a camera where all rays lie on pencil of planes
sharing a line, as shown in Figure 4(c), which also satisfies these conditions. One
can, however, reuse the edge-parallel condition to verify if a GLC is pinhole.
Thus a GLC is pinhole, if and only if A # 0, has one solution, and it satisfies
edge-parallel condition.

Rays of an XSlit camera pass through two slits and, therefore, the character-
istic equation of a GLC must have at least two distinct solutions. Furthermore,
Pajdla [10] has shown all rays of an XSlit camera cannot pass through lines other
than its two slits, therefore, the characteristic equation of an XSlit camera has
exactly two distinct solutions. Thus, a GLC is an XSlit if and only if A # 0 and
A>0.

7 New Multiperspective Camera Models

The characteristic equation also suggests three new multiperspective camera
types that have not been previously discussed. They include 1)twisted ortho-
graphic: A = 0, the equation has no solution, and all rays do not have uniform
direction; 2)pencil camera: A # 0 and the equation has one root, but all rays
do not pass through a 3D point; 3)bilinear camera: A # 0 and the characteristic
equation has no solution. In this section, we give a geometric interpretation of
these three new camera models.

Before describing these camera models, however, we will first discuss a helpful
interpretation of the spatial relationships between the three generator rays. An
affine combination of two 4D points defines a 1-dimensional affine subspace.
Under 2PP, a 1-D affine subspaces corresponds to a bilinear surface S in 3D
that contains the two rays associated with each 4D point. If these two rays
intersect or have the same direction in 3D space, S degenerates to a plane. Next,
we consider the relationship between ray rs and S. We define r3 to be parallel
to S if and only if r3 has the same direction as some ray r € S. This definition
of parallelism is quite different from conventional definitions. In particular, if r3
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Fig. 3. Bilinear Surfaces. (a) 73 is parallel to S; (b) r3 is parallel to S, but still intersects
S; (¢) r3 is not parallel to S, and does not intersect S either.

is parallel to S, r3 can still intersect S. And if r3 is not parallel to S, r3 still
might not intersect S, Figure 3(b) and (c) show examples of each case.

This definition of parallelism, however, is closely related to A in the charac-
teristic equation. If rg is parallel to S, by definition, the direction of r3 must be
some linear combination of the directions of r; and r9, and, therefore, A = 0
by Lemma 5. A = 0, however, is not sufficient to guarantee r3 is parallel to S.
For instance, one can pick two rays with uniform directions so that A = 0, yet
still have the freedom to pick a third so that it is not parallel to the plane, as is
shown in Figure 3(c).

The number of solutions to the characteristic equation is also closely related
to the number of intersections of r3 with S. If r3 intersects the bilinear surface
S(r1,7r2) at P, then there exists a line [, where P € [, that all rays pass through.
This is because one can place a constant-z plane that passes through P and
intersects 1 and ro at @ and R. It is easy to verify that P, @ and R lie on a
line and, therefore, all rays must pass through line PQR. Hence r3 intersecting
S(r1,r2) is a sufficient condition to ensure that all rays pass through some line.
It further implies if the characteristic equation of a GLC has no solution, no two
rays in the camera intersect. GLCs whose characteristic equation has no solution
are examples of the oblique camera from [9].

(b) (©)

Fig. 4. Pushbroom, Twisted Orthographic, and Pencil Cameras. (a) A pushbroom
camera collects rays on a set of parallel planes passing through a line; (b) A twisted
orthographic camera collects rays with uniform directions on a set of parallel planes;
(c) A pencil camera collects rays on a set of non-parallel planes that share a line.
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7.1 New Camera Models

Our GLC model and its characteristic equation suggests 3 new camera types
that have not been previously described.

Twisted Orthographic Camera: The characteristic equation of the twisted
orthographic camera satisfies A = 0, has no solution, and its generators do not
satisfy the edge-parallel condition. If ri, ro and r3 are linearly independent,
no solution implies r3 will not intersect the bilinear surface S. In fact, no two
rays intersect in 3D space. In addition, A = 0 also implies that all rays are
parallel to some plane IT in 3D space, therefore the rays on each of these par-
allel planes must have uniform directions as is shown in Figure 4(b). Therefore,
twisted orthographic camera can be viewed as twisting parallel planes of rays in
an orthographic camera along common bilinear sheets.

Pencil Camera: The characteristic equation of a pencil camera satisfies
A # 0, has one solution and the generators do not satisfy the edge-parallel
condition. In Figure 4(c), we illustrate a sample pencil camera: rays lie on a
pencil of planes that share line [. In a pushbroom camera, all rays also pass
through a single line. However, pushbroom cameras collect rays along planes
transverse to | whereas the planes of a pencil camera contains [ (i.e., lie in the
pencil of planes through 1), as is shown in Figure 4(a) and 4(c).

Bilinear Camera: By definition, the characteristic equation of a bilinear
camera satisfies A # 0 and the equation has no solution (A < 0). Therefore,
similar to twisted orthographic cameras, no two rays intersect in 3D in a bilinear
camera. In addition, since A # 0, no two rays are parallel either. Therefore, any
two rays in a bilinear camera form a non-degenerate bilinear surface, as is shown
in Figure 3(a). The complete classification of cameras is listed in Table 1.

Table 1. Characterize General Linear Cameras by Characteristic Equation

Characteristic Equation 2 Solution 1 Solution 0 Solution Inf. Solution
A#0 XSlit Pencil/Pinholef Bilinear %]
A=0 (%] Pushbroom Twisted/Ortho.t EPI

1: A GLC satisfying edge-parallel condition is pinhole(A # 0) or orthographic (A = 0).

7.2 All General Linear Cameras

Recall that the characteristic equation of a GLC is invariant to translation,
therefore we can translate (s1,¢1) to (0,0) to simplify computation. Furthermore,
we assume the uov triangle has canonical coordinates (0,0), (1,0) and (0,1). This
gives:

A = sotg — 83ty —so —t3+1, A= (82 — t3)2 + 4s3to (10)
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The probability that A = 0 is very small, therefore, pushbroom, orthographic and
twisted orthographic cameras are a small subspace of GLCs. Furthermore since
S2, to, s3 and t3 are independent variables, we can, by integration, determine that
approximately two thirds of all possible GLCs are XSlit, one third are bilinear
cameras, and remainders are other types.

8 Example GLC Images

In Figure 5, we compare GLC images of a synthetic scene. The distortions of the
curved isolines on the objects illustrate various multi-perspective effects of GLC
cameras. In Figure 6, we illustrate GLC images from a 4D light field. Each GLC
is specified by three generator rays shown in red. By appropriately transforming
the rays on the image plane via a 2D homography, most GLCs generate easily
interpretable images. In Figure 7, we choose three desired rays from different
pinhole images and fuse them into a multiperspective bilinear GLC image.

Fig. 5. Comparison between synthetic GLC images. From left to right, top row: a
pinhole, an orthographic and an EPI; middle row: a pushbroom, a pencil and an twisted
orthographic; bottom row: a bilinear and an XSlit.

9 Conclusions

We have presented a General Linear Camera (GLC) model that unifies perspec-
tive (pinhole), orthographic and many multiperspective (including pushbroom
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Fig. 6. GLC images created from a light field. Top row: a pencil, bilinear, and pushb-
room image. Bottom row: an XSlit, twisted orthographic, and orthographic image.

and two-slit) cameras, as well as Epipolar Plane Images (EPI). We have also
introduced three new linear multiperspective cameras that have not been previ-
ously explored: they are twisted orthographic, pencil and bilinear cameras. We
have further deduced the characteristic equation for every GLC from its three
generator rays and have shown how to use it to classify GLCs into eight canonical
camera models.

The GLC model also provides an intuitive physical interpretation between
lines, planar surfaces and bilinear surfaces in 3D space, and can be used to
characterize real imaging systems like mirror reflections on curved surface. Since
GLCs describes all possible 2D affine subspaces in 4D ray space, they can used be
as a tool for first-order differential analysis of these high-order multiperspective
imaging systems. GLC images can be rendered directly by ray tracing a syn-
thetic scene, or by cutting through pre-captured light fields. By appropriately
organizing rays, all eight canonical GLCs generate interpretable images similar
to pinhole and orthographic cameras. Furthermore, we have shown one can fuse
desirable features from different perspectives to form any desired multiperspec-
tive image.
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