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Abstract

Illumination inconsistencies cause serious problems for
classical computer vision applications such as tracking and
stereo matching. We present a new approach to model
illumination variations using an Illumination Ratio Map
(IRM). An IRM computes the intensity ratio of correspond-
ing points in an image pair. We formulate IRM recovery as a
Markov network, which assumes spatially varying illumina-
tion changes can be modeled as a locally smooth function
with boundaries. We show that the IRM Markov network
can be easily incorporated into low-level vision problems,
such as tracking and stereo matching, by integrating IRM
estimation with the optical flow field/disparity map solu-
tion process. This leads to a unified Markov network. We
develop an iterative optimization algorithm based on Be-
lief Propagation to efficiently recover the illumination ratio
map and the optical field/disparity map at the same time.
Experiments demonstrate that our methods are robust and
reliable.

1 Introduction

Illumination changes confound many computer vision
problems. For instance, in classical dense two-frame stereo
matching, the scene is assumed to be Lambertian and cor-
responding pixels have consistent intensities from differ-
ent viewpoints. In the presence of illumination inconsis-
tencies such as shadows that appear in one image but not
the other, state-of-art stereo matching methods frequently
break down in applications such as time-lapse stereo (Fig-
ure 3 and 4). Similar problems exist when tracking objects
moving into and out of shadows or when the camera motion
causes changes in gain and exposure between consecutive
frames (Figure 5). In all these cases the same part of the
scene is inconsistently illuminated. Conventional methods
such as mean shift trackers [3] fail to reliably track desirable
objects [6] on these occasions.

Ideally, each image could be decomposed into an illumi-
nation image and a reflectance image. State-of-art meth-
ods then can be applied only on the reflectance image.

The reflectance image is also one of the intrinsic images
[19, 18, 12]. Most previous approaches for recovering in-
trinsic images require capturing a sequence of images un-
der different illumination conditions with the same view-
point. For outdoor scene, this usually means capturing mul-
tiple images at different times of day. These approaches are
unsuitable for time sensitive applications such as tracking
and stereo matching. Recently, single-image-based intrinsic
image recovery methods have also been proposed [5, 18].
However, these techniques require prior knowledge of the
camera response curve or training data and the resulting in-
trinsic images are generally not coherent frame-to-frame.

In this paper, we present a different approach to solve
the illumination inconsistency problem. Instead of finding
the illumination invariant map of the scene, we set out to
find the illumination transformation between the images.
Specifically, we calculate the ratio of the intensity for the
each scene point over the two images. The resulting ra-
tio image is called the Illumination Ratio Map (IRM). For
static scenes, the IRM is simply the ratio between the ref-
erence and the target images [7, 2]. For dynamic scenes
(e.g., moving objects or moving cameras), computing the
IRM requires warping the target pixels onto the reference
image. Jacob, Belhumeur, and Basri [7] have shown that
the illumination ratios in static scenes tend to exhibit spa-
tial smoothness, although abrupt changes may occur across
the shadow and occlusion boundaries. A similar analysis
applies to dynamic scenes. The spatial smoothness and dis-
continuity properties of IRMs are very similar to the com-
mon assumptions made for stereo disparity images. Recent
results [15, 17] have shown that fields satisfying these prop-
erties can be robustly modeled as a Markov network. In this
paper, we will use the Markov network model to analyze
the IRM. We also show how to incorporate the IRM Markov
network with the optical flow field for tracking, or with the
disparity map for stereo matching. Using an iterative opti-
mization algorithm based on Belief Propagation, we show
how to efficiently recover the illumination ratio map and the
optical field/disparity map simultaneously.

There are three major contributions in this paper. First,
we formulate the illumination inconsistency problem us-



ing the illumination ratio map (IRM) and we analyze the
smoothness and discontinuity property of the IRM. Second,
we model the IRM as a Markov network and demonstrate
how to integrate problem-specific information (e.g., the op-
tical flow or the disparity map) into a unified Markov net-
work. Finally, we provide an iterative optimization algo-
rithm using Belief Propagation to simultaneously recover
the IRM and the optical flow/disparity map.

The remaining of the paper is structured as follows. Sec-
tion 2 discusses the background and the related work. Sec-
tion 3 analyzes the property of the illumination ratio map
and describes how to model it as a Markov network. Section
4 shows how to combine the optical flow field or disparity
map with the IRM as a joint Markov network. Section 5
proposes an iterative Belief Propagation algorithm to solve
the Markov network. Section 6 shows results on synthetic
and real experiments for tracking and stereo matching. Sec-
tion 7 concludes.

2 Background and Previous Work

Classical computer vision problems such as stereo
matching and tracking assume that the scene objects main-
tain consistent appearance in nearby cameras or frames.
Tremendous efforts have been focused on how to robustly
handle issues that are largely unrelated to illumination such
as textures, noise, and occlusion boundaries [13, 11, 14, 15].
Graph-cut based algorithms[1, 9, 10] and Belief Propa-
gation methods [20, 4, 15, 16] have achieved highly ac-
curate and stable reconstruction on illumination-consistent
scenes. However, these algorithms are sensitive to illu-
mination changes such as varying shadows or lightings.
Normalized-cross correlation (NC) is often used to reduce
these illumination incoherencies. However, because NC is
a window-based approach, features smaller than the win-
dow size in the scene cannot be correctly recovered. Typ-
ical examples are shown in Figure 3 and 4. Illumination
variations also create serious problems for tracking. For in-
stance, when tracking objects moving inside and outside the
shadow regions, state-of-art algorithms such as mean shift
[3] fail [6]. Furthermore, illumination variations can also
lead to dramatic changes in the camera gain and exposure
settings. As a result, the overall intensity level in the neigh-
boring frames can be inconsistent [8].

One way to tackle the illumination inconsistency prob-
lem is to compute the illumination invariance image, also
called the intrinsic image, and then apply state-of-art meth-
ods on intrinsic images. Weiss [19] developed a maximum
likelihood (ML) method to recover the intrinsic image from
an image sequence captured at a fixed viewpoint under sig-
nificantly different lighting conditions. Matsushita et al.
[12] extended Weiss’s algorithm to derive time-varying in-
trinsic images and utilized an eigenspace for capturing the
dominant illumination variations. However, in tracking or

stereo matching, capturing multiple images with varying il-
luminations for each frame is impractical. Single-image-
based intrinsic image recovery algorithms have also been
proposed. Finlayson et al. [5] proposed to use a single color
image to recover the intrinsic image by calculating an an-
gle for an ”invariant direction” in a log-chromaticity space.
Tappen et al. [18] used multiple cues and a trained clas-
sifier to estimate both shading and reflectance intrinsic im-
ages. Although these approaches achieve plausible results
from an single image, it is unclear how to maintain spatial-
temporal consistencies when applying these algorithms on
to multiple images or video frames.

Alternatively, it is possible to estimate illumination vari-
ations instead of the illumination invariance images. Jacob
et al [7, 2] proposed to use the ratio image on static scenes.
They used the ratio images to distinguish whether the two
images capture the same object. Recently, Freedman and
Turek [6] proposed an illumination-insensitive tracking al-
gorithm. They placed consistency constraints on the illumi-
nation model by assuming that the consistent scene inten-
sities should propagate throughout all frames. In this pa-
per, we also model the illumination variations. We model
the illumination changes using an Illumination Ratio Map
(IRM). An IRM computes the intensity ratio of the same
scene point in two images. Jacob et al’s illumination ratio
image is a special case of the IRM when the viewpoint of
the two images does not change and the scene is static [7].

Before proceeding, we clarify the notation. I{IR, IT }
represents an image pair, where IR is the reference and IT

is the target images, (x, y) represents a pixel, D represents
the disparity map, and d corresponds to the disparity for
each pixel in D. Γ represents the IRM and γ(x, y) is the
illumination ratio for a specified pixel in Γ.

3 Illumination Ratio Map

The Illumination Ratio Map (IRM) models the intensity
variation or relative scale of corresponding scene points in
two images. Consider a 3D point Ṗ imaged at pixel (x, y).
Under Lambertian assumption, the intensity η(x, y) of Ṗ
can be computed as:

η(x, y) =
∑

k µkρ(Ṗ )(L̂k(Ṗ ) · N̂(Ṗ ))

= ρ(Ṗ )
∑

k µk(L̂k(Ṗ ) · N̂(Ṗ )) (1)

where the scalar µk is the magnitude of the light source k
and ρ(Ṗ ) is the reflectance (albedo) at Ṗ . L̂k(Ṗ ) is the
normalized light direction for light source k, and N̂(Ṗ ) is
the surface normal.

An IRM Γ computes the intensity ratio of each scene
point Ṗ between the target and the reference images, i.e.,

γ(x, y) =
ρ(Ṗ )

∑
k µk(L̂k(Ṗ ) · N̂(Ṗ ))

ρ(Ṗ )
∑

k′ µk′(L̂k′(Ṗ ) · N̂(Ṗ ))
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Figure 1. The Illumination Ratio Map is computed as the
intensity ratio of the corresponding pixels in a pair of im-
ages. It is a function of the surface normal and the lightings.

=
∑

k µk(L̂k(Ṗ ) · N̂(Ṗ ))∑
k′ µk′(L̂k′(Ṗ ) · N̂(Ṗ ))

(2)

where k and k′ correspond to different illuminations for IT

and IR.
If IR and IT are captured at the same viewpoint, and

scene is static, then the IRM Γ simply corresponds to IT

IR
. If

the camera position changes or any part of the scene moves,
we need to finding the corresponding pixel in IT , i.e.,

γ(x, y) =
IT (x + dx, y + dy)

IR(x, y)
(3)

where D(dx, dy) corresponds to the disparity map or optical
flow field. Our goal is to simultaneously recover Γ and D
from images seen under differing illumination changes.

The Illumination Ratio Map (2) is independent of the
surface reflectance ρ. This means an IRM should be insensi-
tive to textures variations. The IRM is a smooth function of
the surface normal. Since most of the objects are smooth
in real scenes, the IRM maintains spatial smoothness in
general. Discontinuities appear in the IRM at regions with
abrupt normal changes (e.g., creases), across scene occlu-
sion boundaries or shadow boundaries, or with moving ob-
jects. The discontinuities caused by normal changes are of-
ten moderate because the change in the viewing or lighting
direction are usually limited. Occlusion boundaries are a
major cause of IRM discontinuity. For instance, when the
illumination direction changes across the two images, shad-
ows abutting the occlusion boundaries may appear or disap-
pear. As a result, sharp edges can appear near depth edges
in the IRM. Shadow boundaries also change due to illumi-
nation variations. However, since most of the shadows are
soft in real scenes, they often lead to smooth transition in-
stead of discontinuities in the IRM. Finally, moving objects
can also incur discontinuities. For instance, an object can

(a) (b)

(c) (d)

Figure 2. Illumination Ratio Map. (a) and (b) are cap-
tured with a fixed camera of a static scene under different
lighting conditions. (c) shows the log ratio image by di-
viding (a) by (b). Notice the noise in the ratio image in
the dark regions. (d) is the recovered IRM using Markov
network and Belief Propagation. It is much smoother and
cleaner because of the spatial smoothness prior.

move inside and outside the bright and dark regions (shad-
ows) or cast new shadows onto the other parts of the scene.
In practice, the illumination changes on the moving objects
are usually smooth with an exception near depth disconti-
nuities. Figure 2(c) and 4(c) illustrate typical Illumination
Ratio Maps.

4 IRM Markov Network

The spatial smoothness and occlusion discontinuity of
the IRM are very similar to those seen in disparity maps
from stereo matching. Previous researchers [20, 4, 15, 16,
17] have shown that fields satisfying such properties can be
modeled as a probabilistic graphical model. Thus, we use a
Markov network to model the IRM.

Each node in the graph corresponds to a pixel in the IRM
and is assigned with an observed variable and a hidden vari-
able. Given the reference and the target images I{IR, IT },
our goal is to find a maximum a posteriori (MAP) Markov
network of the IRM. This amounts to solving the following
equation:

P (Γ|I) ∝
∏

s,t∈N

Ψγ
s,t(γs, γt)

∏
s

Φs(γs) (4)

where Φs is the evidence function describing how well the
estimated IRM fits IR and IT . Ψγ

s,t is the compatibility
function, which enforces the pairwise smoothness of Γ.

In the most basic setup where the reference and the tar-
get images are captured from the same viewpoint in a static
scene, the IRM, in theory, could be computed as a simple



(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 3. Stereo Matching on Synthetic Data. (a) is the left image in the Tsukuba stereo pair. (b) is the right image corrupted by a
synthetic shadow mask (c). (c) Ground truth illumination ratio map (IRM). (d) The recovered IRM using our algorithm. (e) Ground
truth disparity map. (f) Recovered disparity map using per pixel-based intensity difference (SD). (g) Recovered disparity map using
normalized-cross correlation (NC). (h) Result of our algorithm.

ratio between the two images. However, IRM obtained this
way can be very noisy due to the noise from the capturing
process, as is shown in Figure 2(c). Instead, if we model
the IRM as a Markov network and solve it using the Belief
Propagation method (see Section 5), we are able to obtain
much smoother and cleaner IRM as shown in Figure 2(d).
In a more sophisticated setup such as stereo matching or
tracking, neither the IRM nor the disparity map/optical flow
field is unknown. We propose a unified framework to re-
cover both the disparity map/optical flow field and the IRM
at the same time.

4.1 Disparity Markov Network

Stereo matching in presence of illumination changes is
a challenging problem because both the disparity map D
and illumination ratio map Γ are unknown. Here, we use a
coupled Markov network to model this problem. Assume
the two images have been rectified to have only horizon-
tal parallax, we then assign the 1D disparity map to each
node. Each node (pixel) in the Markov network, thus, has
state (γ, d), which corresponds to the illumination ratio map
Γ and the disparity map D. We estimate the MAP of the
joint probability given a image pair I{IR, IT }. This can be
formed as:

P (Γ, D|I) ∝
∏

s,t∈N

Ψd
s,t(ds, dt)

∏
s,t∈N

Ψγ
s,t(γs, γt)∏

s

Φs(γs, ds, I) (5)

where the evidence function Φs describes how well the il-
lumination ratio γs and the disparity ds fits the observation.

Ψγ
s,t and Ψd

s,t encode the smooth prior of D and Γ sepa-
rately.

We use intensity consistency to define the evidence func-
tion Φs given hypothesized disparity map and illumination
ratio map.

Φs(γs, ds, I) = exp(−Ec(γs, ds, I)) (6)

where Ec(γs, ds, I) measures the consistencies for pixel
(xs, ys) given γs and ds.

Ec(γs, ds, I) = min(‖γs·IR(xs, ys)−IT (xs+ds, ys)‖2, Tc)
(7)

We use the L2-norm for computing Ec. The truncation
threshold Tc is used to reduce noise and remove outliers.

Following the analysis in Section 3, we see that the IRM
and the disparity map both satisfy the spatial smoothness
property. Thus, we encode the piecewise smoothness prop-
erty into the compatible functions as:

Ψd
s(ds, dt) = exp(−Ed(ds, dt)) (8)

Ψγ
s (γs, γt) = exp(−Eγ(γs, γt)) (9)

where Ed and Eγ are the truncated linear function:

Ed(ds, dt) = min(λd|ds − dt|, Td)
Eγ(γs, γt) = min(λγ |γs − γt|, Tγ) (10)

where λd and λγ encode the rate of increase for the cost
function, and Td and Tγ are the truncation thresholds to
model abrupt changes of the disparity map and the IRM
near occlusion boundaries. The truncation function also al-
lows us to implement an efficient Belief Propagation algo-
rithm for solving the Markov network [4, 16].



(a) (b) (c)

(d) (e) (f )

Figure 4. Stereo Matching on real data. (a) and (b) are the left and the right stereo images of a real scene. In the left image,
additional soft shadows were cast on the colored box, the background cloth, and the folks. (c) Estimated log domain IRM using our
algorithm. (d) Estimated disparity map using per-pixel-based intensity difference. (e) Estimated disparity map using normalized-
cross correlation. (f) Estimated disparity map using our algorithm.

The two compatible functions also differ in their param-
eters. Compared with the disparity map, the magnitude of
the illumination ratio change is often much higher. In other
words, the disparity map is smoother overall. We, therefore,
set λd bigger than λγ to maintain stronger smooth priors.

4.2 Optical Flow Markov Network

When estimating the optical flow with the IRM, we for-
mulate the problem in a similar way as the stereo match-
ing. The only difference is that the displacement takes
place at both the horizontal and vertical directions, i.e.,
ds = (dx, dy). Therefore, the state space of each node is
one dimensional higher than the disparity map Markov net-
work. The evidence and the compatible function for the
optical flow field are, therefore, modified as:

Ec(γs, ds, I) = (11)
min(‖γs · IR(xs, ys)− IT (xs + dx

s , ys + dy
s)‖2, Tc)

Ed(ds, dt) =
min(λd|dx

s − dx
t |, Td) + min(λd|dy

s − dy
t |, Td)

5 Optimization

In order to find the MAP of the joint Markov network, we
use Belief propagation (BP) to iteratively optimize the IRM
and the disparity map or optical-flow field. In BP, messages

are passed onto neighboring nodes to update the states of the
hidden variables until it reaches MAP. We refer readers to
[15, 17] for a detailed discussion on BP for stereo matching.

In the basic case when the two images are taken at the
same viewpoint of a static scene, simply dividing, on a per
pixel basis, the target image by the reference image gives
a noisy IRM estimate, as shown in Figure 2(c). Instead,
we use a single-hidden-variable IRM Markov network (4)
to model the IRM. ”Max-product” rule is used for comput-
ing the maximum joint posterior P (Γ|I), where the message
propagated from node s to t at the ith iteration is computed
as

M i
st(γt)← κ max

γs

Φs(γs)Ψ
γ
s,t(γs, γt)

∏
k∈N(s)\t

mi−1
k,s (γs)

(12)
The final belief of each node is determined by the lo-

cal evidence function and the incoming messages from its
neighbors:

bs(γs) = κΦs(γs)
∏

k∈N(s)

mk,s(γs) (13)

The result using BP for computing IRM of the static scene
with fixed camera is shown in Figure 2(d).

5.1 Iterative BP
When the IRM is combined with the disparity map, the

joint Markov network is two dimensional (or three dimen-



sional if combined with the optical flow). In theory, two or
three dimensional BP algorithm could be directly applied
to estimate the MAP of the joint Markov network. How-
ever, it is practically infeasible. In a normal situation, the
possible range of illumination ratio is large, and we usually
need more than 50 levels of illumination ratio to reduce the
discretization error. We also use more than 10 levels of pos-
sible disparities for each pixel. This means that more than
500 states are needed to model the hidden variables for each
pixel. The huge memory and computation requirements are
prohibitive.

However, the joint Markov network (5) implies if one of
the hidden variables, say the disparity, is known, then stan-
dard BP algorithm can be applied to calculate the MAP for
the IRM, and vice versa. Therefore, we implement an it-
erative optimization algorithm to alternatively compute the
MAP of the IRM and the disparity map Markov networks.

We start with estimating the initial disparity map. We
use normalized cross-correlation (NC) to reduce the illu-
mination inconsistencies and use it as the correspondence
measure. We also modify the evidence function to measure
only disparity consistencies, i.e.,

Φs(ds, I) = exp(−Ecorr(ds, I)) (14)

where Ecorr computes the normalized cross-correlation.
We then solve the simplified disparity Markov network:

P (D|I) ∝
∏

s,t∈N

Ψd
s,t(ds, dt)

∏
s

Φs(ds, I) (15)

After initial disparity estimation, we can iteratively esti-
mate the IRM and the disparity map. When estimating the
IRM given disparity, we omit the compatible function (8)
that corresponds to disparity and use ds = d̂s in equation
(5), where d̂s is the estimated disparity from last iteration.
Max product BP is again used to calculate the MAP of the
IRM.

With known IRM, similar steps are taken to estimate the
disparity map. In this case, the compatible function of the
IRM (9) is omitted and we use γs = γ̂s, where γ̂s is the
estimated IRM from the last iteration.

Our iterative optimization algorithm alternatively esti-
mates the MAP of the IRM given a disparity map, and the
MAP of the disparity map given an IRM. We implement
a similar optimization algorithm in tracking except that we
compute the MAP for both dx and dy . We apply a very ef-
ficient implementation [4] of BP to compute MAP at each
iteration. We find it often sufficient to iterative 3 or 4 times
to obtain satisfactory results in our experiment.

6 Results
In this section, we demonstrate our algorithm in tracking

and stereo matching under variable illumination conditions.

So far, our algorithm assumes the surface albedo is inde-
pendent of the light spectrum and, hence, the IRM can be
computed as the ratio of the intensities. In practice, real
materials often contain spectrum-dependent albedos partic-
ularly in color textured regions. In these cases, the IRM
should also be computed in term of the spectrum IRM. To
simplify this problem, we adopt a commonly used assump-
tion [5] that the camera has narrow band responses for the
r, g, and b color channels. Under this assumption, we can
compute the color IRM as the average of individual color
IRM Ir, Ig , and Ib.

γcolor(x, y) =
γr(x, y) + γg(x, y) + γb(x, y)

3
(16)

where

γi(x, y) =
Ii
T (x + dx, y + dy)

Ii
R(x, y)

i = r, g, b. (17)

We find equation (16) is usually a good approximation.
For example, in Figure 4, despite significant variations of
the colored patterns on the background cloth, the recovered
IRM is smooth and insensitive to the texture. In our experi-
ment, we use equation (16) to estimate the IRM.

6.1 Stereo Matching

We first demonstrate our method using synthetic data. In
Figure 3, we show the Tsukuba stereo image pair. The target
(right) image is corrupted by modulation with a synthetic
mask 3(c). Directly applying state-of-art stereo matching
algorithms results in serious errors. In 3(f), we apply Be-
lief Propagation using per-pixel-based intensity difference
(SD). The recovered disparity image captures details in un-
masked regions but incur large errors in masked regions.
To reduce the artifacts of inconsistent illumination, we then
apply normalized-cross correlation (NC) with Belief Prop-
agation. The window-based approach incurs less error but
the result is overly blocky. For example, it cannot capture
fine features such as arm of the lamp. Figure 3(h) shows the
results using our method. Our method is able to simultane-
ously capture fine details as well as maintain smoothness.
Figure 3(c) and 3(d) compares the recovered IRM using our
method and the ground truth.

We then tested our method on real scenes in Figure 4.
The reference and the target images were captured using a
Pointgrey Flea camera (Sony ICX204 sensor). In the left
reference image, additional shadows were cast onto the col-
ored box, the toy soldiers, and the plastic utensils. Figure
4(d) uses BP with SD and 4(e) with NC. Notice methods
using SD are very sensitive to illumination changes and of-
ten incur large error in the illumination inconsistent regions.
NC maintains an overall smoothness but is unable to recover
fine details such as the background folks and the foreground



Figure 5. Tracking a toy tank across the shadow. Top row: frame 7, 34, 59, and 89 from the toy sequence. Bottom row: tracking
results using our method. Our method maintains a secure focus on the toy tank through out the sequence.

toy soldiers. Furthermore, since additional shadows were
cast between the left and the middle toy soldiers, NC merges
the two with a uniform disparity. Our method 4(f) is able to
robustly recover both the disparity map with fine details and
the illumination ratio map.

Our result, in theory, can be further improved using the
symmetric stereo algorithms proposed recently by Sun et
al [16]. Authors of [16] proposed to include an additional
binary process in the Markov network to model occlusions.
However, doing so requires encoding even more states in the
hidden variables. We intend to further investigate efficient
ways to reduce the state space in the future.

6.2 Tracking
Next, we present results on tracking using our algorithm.

The first sequence contains a toy car moving in and out of
shadows. This is a challenging scene for conventional track-
ing algorithms [6]. To track the toy car, we compute the
optical flow using the joint IRM/flow Markov network and
integrate it over frames. In Figure 5, We highlight our track-
ing results in red. Our algorithm is able to reliably track the
moving objects in the presence of both soft and strong shad-
ows.

The second sequence shows the toy car moving under
rapidly varying illumination. This is also a difficult scene
for most algorithms. In the middle row of Figure 6, we
show the tracking results of respective frames using our al-
gorithm. Our method is insensitive to illumination varia-
tions.

6.3 Delighting

We can further reduce the illumination inconsistencies
across the frames by delighting/relighting the video using
the computed IRMs. For a static scene, delighting can be
achieved by averaging the neighboring frames. For a dy-

namic scene, in theory, one can warp the moving parts and
then compute the average intensity. However, averaging
over the intensities is problematic because inaccurate op-
tical flow calculation act like random noise, and blindly av-
eraging them over the moving areas results in blurry im-
ages. Instead, we average the low-frequency illumination
ratio maps over the frames.

Denote γi→k to be the IRM of frame i with respect to
k. The average IRM at frame k γk is computed over the
neighboring 2N + 1 frames as:

γk =
∑k+N

i=k−N γi→k

2N + 1
(18)

Notice, γi→k accumulatively combines the IRMs as:

γi→k =


1

γiγi+1···γk−1
, i < k

1, i = k
γkγk+1 · · · γi−1. i > k

(19)

where γi corresponds to the IRM of frame i with respect to
frame i + 1 after warping.

The bottom row in Figure 6 shows the delighted se-
quence using our algorithm. Despite the dramatic illumi-
nation changes between the frames, our algorithm is able to
synthesize a new illumination consistent video.

7 Conclusions

We have presented a new approach to model illumination
variations using an Illumination Ratio Map (IRM). An IRM
computes the intensity ratio of corresponding points in an
image pair. We have shown that an IRM maintains spatial
smoothness and can be effectively modeled as a Markov
network. We have demonstrated how to incorporate the
IRM Markov network into low-level vision problems in-
cluding tracking and stereo matching, by integrating IRM



Figure 6. Tracking a toy tank under variable illumination. Top row: frame 1, 20, 44, and 68 from the second toy sequence. Middle
row: tracking results using our method. Bottom row: delighted frames.

estimation with the optical flow/disparity map solution pro-
cess. This leads to a unified Markov network. We developed
an iterative optimization algorithm based on Belief Propa-
gation to efficiently recover the illumination ratio map and
the optical field/disparity map at the same time. We have
demonstrated our algorithm for both stereo matching and
tracking on scenes with variable illumination. Experimen-
tal results show that our methods are robust and reliable.
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