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Abstract

We present a new Coprime Blurred Pair (CBP) theory
that may benefit a number of computer vision application-
s. A CBP is constructed by blurring the same latent image
with two unknown kernels, where the two kernels are co-
prime when mapped to bivariate polynomials under the z-
transform. We first show that the blurred contents in a CBP
are difficult to restore using conventional blind deconvolu-
tion methods based on sparsity priors. We therefore intro-
duce a new coprime prior for recovering the latent image in
a CBP. Our solution maps the CBP to bivariate polynomials
and sample them on the unit circle in both dimension. We
show that coprimality can be derived in terms of the rank of
the Bézout Matrix [2] formed by the sampled polynomials
and we present an efficient algorithm to factor the Bézout
Matrix for recovering the latent image. Finally, we dis-
cuss applications of the CBP theory in privacy-preserving
surveillance and motion deblurring, as well as physical im-
plementations of CBPs using flutter shutter cameras.

1. Introduction
Image blurs confound many computer vision problems.

A blurred image B can be viewed as the convolution of a
latent image L with a blur kernel K. Tremendous efforts
have been focused on solving the blind image deconvolu-
tion problem in which neither L nor K is known. Since
blind deconvolution is an under-constrained problem, state-
of-the-art solutions rely on regularization to avoid trivial so-
lutions [22]. Latest approaches attempt to use special priors
such as image statistics [9], edge and gradient distributions
[14], kernel sparsity and continuity [7], or color informa-
tion [12] for both kernel estimation and image deconvolu-
tion. We refer the readers to the recent paper by Levin et al.
[16] for a comprehensive review.

Recently, a new class of dual-image deblurring tech-
niques have been proposed. These techniques use a pair
of images captured towards the same scene under different
aperture/shutter settings. For example, a blurry/noisy im-
age pair can be captured with different shutter speeds. The

image pair helps to estimate the kernel and to reduce the
ringing artifacts [28] in reconstruction. A dual-blur pair [7]
captures the scene under different motion blurs. It then es-
timates both blur kernels by constructing an equally blurred
image pair. These methods suggest that the correlation be-
tween the images imposes important constraints that are
useful for kernel and latent image estimations. In a simi-
lar vein, we present a novel Coprime Blurred Pair (CBP)
theory that may benefit a number of computer vision appli-
cations.

A CBP is a special subset of dual-blur pairs [7]. A dual-
blur pair is obtained by blurring the same latent image with
different kernels whereas in a coprime pair, the two ker-
nels are not only different but also ´́ coprime`̀ . Consider a
1D example with n as the pixel index, L(n) as the laten-
t image, K1(n) and K2(n) as the kernels, and Bi(n) =
L(n) ⊗ Ki(n), i = 1, 2 as the blurred images, where ⊗
is the convolution operator. If we take the z-transform [4],
we can map L(n), Ki(n), and Bi(n) to polynomials l(z),
ki(z), and bi(z) and we have bi(z) = l(z) · ki(z), i = 1, 2.
We call [B1(n), B2(n)] a CBP if their kernel polynomials
k1(z) and k2(z) are coprime.

We first show that the blurred image contents in a CBP
are difficult to restore using conventional blind deconvo-
lution methods based on sparsity priors. We therefore in-
troduce a new coprime prior for recovering the latent im-
age in a CBP. Conceptually, since the blur kernels in a
CBP are coprime, we can directly estimate the latent im-
age as the Greatest Common Divisor (GCD) between the
´́ blurred`̀ polynomials b1(z) and b2(z). In practice, pre-
vious approximate GCD algorithms [19] or co-primeness
condition [10] are computationally expensive and sensitive
to noise. Therefore, they are less suitable for vision appli-
cations.

Our solution is to cast the coprime constraint on the blur
kernels. We first map the CBP to bivariate polynomials and
sample them on the unit circle in both dimension. We show
that coprimality can be derived in terms of the rank of the
Bézout Matrix [2] formed by the sampled polynomials and
we present an efficient algorithm to factor the Bézout Ma-
trix for recovering the latent image. Our new algorithm is



significantly more efficient than the GCD-based approaches
and is also more accurate and robust compared to sparsity-
based deblurring methods.

While image blurs have been commonly considered ad-
verse in computer vision, we show that coprime blurs may
benefit several vision tasks. For example, by measuring
the coprimality between the blur images, we can easily es-
timate the size of the kernel and hence simplify previous
guess-and-check approaches. We further explore applying
the CBP theory for conducting privacy-preserving surveil-
lance, a field that has attracted an increasing amount of
attention in recent years [1, 26]. Our solution is to pro-
vide multi-level video surveillance streams by strategically
blurring the video contents. Specifically, we form two co-
prime blurred video streams from the regular surveillance
video, where the first is accessible to everyone within the
surveillance network and the second will be only accessible
to those with a high security clearance. Finally, we dis-
cuss physical implementations of CBPs using flutter shutter
cameras.

2. Dual-Blur Pairs and Coprime Blur Pairs
In a dual-blur pair, each blurred image Bi is obtained by

convolving the same latent image L with a different kernel
Ki, plus noise Nei :

Bi = L⊗Ki +Nei , i = 1, 2 . (1)

Previous approaches have shown that it may be possible to
estimate K1, K2, and L directly from B1 and B2. For ex-
ample, Rav-Acha and Peleg [21] attempt to estimate the op-
timal kernels by constructing an equally blurred image pair:
E = ∥B1 ⊗K2 −B2 ⊗K1∥2. We can rewrite E = ΓQΓT ,
where Q = [A2,−A1]

T [A2,−A1], A1, A2 are the convo-
lution matrices with respect to the blur images B1 and B2;
Γ = [Γ1; Γ2], where Γ1 and Γ2 are column vectors unrolled
from the kernel matrices K1 and K2 respectively.

Additional regularization terms are added to constrain
the solution. For example, we can modify the optimization
problem as:

argmin
Γ

ΓQΓT + λ∥Γ∥α, (2)

subject to γi ≥ 0,
t2∑
i=1

γi = 1, and
2t2∑

i=t2+1

γi = 1,

where t2 indicates the number of elements in each kernel of
size t× t and λ is the weight for the regularization term.

2.1. Gaussian Prior and Sparsity Prior

The regularization term in Eqn. (2) can be interpreted as
priors. Two classical examples are the Gaussian prior and
the sparsity prior. The Gaussian prior corresponds to using

the ℓ2 norm on the kernel. Its main advantage is that the
corresponding optimization problem is convex and can be
solved efficiently. The ℓ2 norm, however, tends to force the
elements in the kernel to have identical values, that is, the
estimated kernel would be similar to a box filter if we use a
large weight λ.

The sparsity prior accounts for the fact that a blur kernel
often contains many zeros. An effective way to impose the
sparsity prior is to use the ℓ0 norm on the kernel (i.e., by
counting the nonzero entries in Γ). Under the ℓ0 norm, the
corresponding objective function is unfortunately neither d-
ifferentiable nor convex and finding the optimal solution is
NP-hard. To resolve this issue, it is common practice to re-
place the sparsity prior with a hyper-Laplacian model [15]
by using an ℓα norm with α < 1. In Section 5, we use
α = 0.5 to emulate the sparsity prior.

Instead of using Gaussian or sparsity priors, we intro-
duce a new coprime prior. Notice that if the first kernel
is Gaussian and the second is sparse in the dual-blur pair, it
will be challenging to find the proper α for robustly estimat-
ing the kernels, as shown in Fig. 1. However, such kernel
pairs are generally coprime [13] and we can effectively use
coprimality to deblur the imagery data (Section 4).

2.2. Coprime Prior

To precisely define the CBP model, we start with trans-
forming an image to its corresponding bivariate polynomi-
al using the z-transform. Specifically, we can view the in-
tensity at each pixel as the coefficients of the polynomial
and directly treat the image as a matrix. For example, the
blurred image B can be transformed to a bivariate polyno-
mial b(z1, z2) in z1 and z2 as,

b(z1, z2) = zT1 ·B · z2, (3)

where z1 = [1, z1, z
2
1 , . . . , z

M−1
1 ]T , and z2 =

[1, z2, z
2
2 , . . . , z

N−1
2 ]T , and M ×N corresponds to the res-

olution of the image. Similarly, we can transform the laten-
t image L and the blur kernel K into their corresponding
polynomials l(z1, z2) and k(z1, z2), respectively.

Under the z-transform, the convolution of a latent im-
age with the blur kernel becomes the multiplication of their
corresponding polynomials, e.g., the z-transformed, blurred
image pair B1 and B2 can be rewritten as:{

b1(z1, z2) = l(z1, z2) · k1(z1, z2) + ne1(z1, z2)

b2(z1, z2) = l(z1, z2) · k2(z1, z2) + ne2(z1, z2).
(4)

If we assume that the two polynomials k1(z1, z2) and
k2(z1, z2) are coprime, we can, in theory, directly obtain l
as the approximate GCD of b1 and b2 (approximate because
of the noise terms):

l(z1, z2) = gcd{b1(z1, z2), b2(z1, z2)}. (5)



(a) One Image in the CBP (d) Coprime Prior Results(c) Sparsity Prior Results(b) Gaussian Prior Results

Figure 1. Coprime prior vs. sparisity/Gaussian prior. We blur the garden scene image with a pair of kernels, one Gaussian and one sparse
(random). (a) shows one of images in the blur pair. (b), (c) and (d) compare the deblurring results using the Gaussian prior, the sparsity
prior (α = 0.5), and our coprime prior, respectively. The ground truth and the recovered sparsity kernel is shown at the upper right corner
in each image. Bottom row shows the close-up views.

The latent image can then be recovered using the inverse
z-transform.

Although computing the approximate GCD between two
polynomials is a well studied problem in symbolic algebra,
most existing algorithms are not directly applicable to our
problem. Most previous solutions [3, 25, 27] have focused
on 1D GCD computation. In essence, similar to Eqn. (2),
we could pack the 2D blur images into 1D vectors, and use
the 1D algorithm to solve for the latent image and blur k-
ernels in the vector format. This approach however, is not
stable for images: an image of size M × N maps to a 1D
polynomial with degreeMN−1; thus places great demands
on computation power and system memory. Moreover, this
approach would easily produce trivial results because of ac-
cumulated errors. In contrast, our algorithm tackles the 2D
GCD problem by solving a series of 1D GCD with degree
M − 1 or N − 1 with high accuracy.

3. CBP Deblurring
Next we present an approximate algorithm for deblur-

ring a CBP. To better illustrate our algorithm, we start from
the 1D (univariate) case and then extend to the 2D (bivari-
ate) case. For clarity, we keep the consistent notations for
both cases: we present the polynomials using two vari-
ables z1 and z2 in the 2D case (e.g., b(z1, z2), l(z1, z2), and
k(z1, z2)) and use a single variable z to represent the 1D
case (e.g, b(z), l(z), and k(z)).

3.1. Kernel Degree Estimation

An important yet under-explored step in most existing
blind image deconvolution algorithms is to estimate the k-
ernel size t. Previous approaches have commonly adopted a
guess-and-check scheme: one can repeat the algorithm mul-
tiple times with different kernel sizes and then compare the

deconvolution results to find the optimal kernel size. We,
in contrast, develop a novel technique that directly recovers
the kernel size by analyzing the Bézout matrix [2].

In mathematics, a Bézout matrix (or Bézoutian) is a spe-
cial square matrix associated with two polynomials. Such
matrices can be used to test the stability of a given polyno-
mial [25] and they play an important role in control theory.
In this paper, we propose to use the Bézout matrix for test-
ing the coprimality between the kernels.

We first consider a pair of univariate polynomials
b1, b2 ∈ C[z] \ {0} of degree m:{

b1(z) =
∑m

i=0 uiz
i, um ̸= 0,

b2(z) =
∑m

i=0 viz
i, vm ̸= 0.

(6)

The Bézout matrix B̃(b1, b2) = (b̃ij) is an m ×
m matrix where b̃ij =

∑s
l=0(um−i+m−j−l−1vl −

ulvm−i+m−j−l−1), i, j = 1, 2, . . . ,m and s = min(m −
i− 1,m− j − 1). The Bézout matrix satisfies

b1(y)b2(x)− b1(x)b2(y)

x− y
= [xm−1, xm−2, xm−3, . . . , x, 1]

B̃(f1, f2)[y
m−1, ym−2, ym−3, . . . , y, 1]T .

In symbolic algebra, it has been shown [2] that we can
derive the degree of the GCD between b1(z) and b2(z) as:

deg(gcd(b1, b2)) = dim NullSpace(B̃(b1, b2)). (7)

Assume deg(l) = r, where l(z) is the GCD of b1(z)
and b2(z). From Eq.(7), it is easy to verify that the rank of
B̃(b1, b2) is m − r = t. This suggests that we can direct-
ly estimate the kernel degree t in terms of the rank of the
Bézout matrix B̃(b1, b2).



To further accelerate the estimation of rank(B̃(b1, b2)),
we have developed a scheme similar to those in [25] by
checking the rank of the first s × s leading principal sub-
matrix B̃s(b1, b2) of B̃(b1, b2) as{

det(B̃s(b1, b2)) ̸= 0, s ≤ t,

det(B̃s(b1, b2)) = 0, s > t.
(8)

Specifically, among the first 1 × 1, 2 × 2, 4 ×
4, . . . , 2⌈log2(t+1)⌉ × 2⌈log2(t+1)⌉ leading principal
submatrices of B̃(b1, b2), we find the first one that is
singular, and will use its rank as the blur kernel size t.

For a 2D polynomial pair, we fix one variable (z1) and
directly use the 1D algorithm as follows:

Algorithm 1. (Kernel Degree Estimation in z2)
Input: b1(z1, z2), b2(z1, z2)
Output: 1D kernel degree t

1. Evaluate b1(z1, z2) and b2(z1, z2) at some point z1 = a,
thus b1 and b2 become to be 1D polynomials as b1(a, z2)
and b2(a, z2).

2. i = 0.
3. Build the first 2i × 2i leading principal submatrix
B̃s(b1(a, z2), b2(a, z2)) of the Bézout matrix B̃, s = 2i.

4. IF B̃s(b1(a, z2), b2(a, z2)) is singular, output t =
rank(B̃s(b1(a, z2), b2(a, z2))),

5. IF not, i = i+ 1, go to step 3.

We apply Alg.1 a number of times (∼50 times in all our
examples) by randomly choosing the sample points in z1
and save the estimated t values. Next, we repeat our al-
gorithm by swapping the dimensions and save the results.
Finally, we choose the kernel size estimate with the most
votes.

Notice that the core of our algorithm is to determine
the rank of matrices B̃s(b1, b2). We use the singular
value decomposition (SVD): let UΣV be the SVD of
B̃s(b1, b2), where U and V are unitary matrix and Σ =
diag(σ1, . . . , σs) with σ1 ≥ . . . ≥ σk ≥ 0. A brute-force
approach is to use a threshold ϵ and count the number of
eigenvalues whose values are greater than ϵ · σ1. To make
our algorithm more robust, we add an additional constraint:
we look for the largest ratio (gap) η between the adjacen-
t eigenvalues, i.e., the rank t of the matrix corresponds to
the largest t that maximizes η in σt ≥ η · σt+1 and satisfies
σt ≥ ϵ·σ1. Because we work up from small principal minor
sizes by doubling, the run time for kernel degree estimation
is O(t3 log(t)), whereas direct application of SVD to the
Bézout matrix would cost O(n3). This is very advantageous
when the kernel size t is small.

3.2. Blur Kernel Estimation

Once we determine the kernel size, we set out to find the
actual blur kernels.

1D Kernel. We again start with the 1D case. Recall that
l(z) = gcd(b1(z), b2(z)), deg(l) = r, and k1(z) and k2(z)

are the cofactors. We define the univariate polynomial k1(z)
and k2(z) as{

k1(z) =
∑t

i=0 ciz
i, ct ̸= 0,

k2(z) =
∑t

i=0 diz
i, dt ̸= 0.

(9)

Recent work [25, 17] in computer algebra has shown that
the 1D kernel c = [c0, c1, . . . , ct] satisfies the following
property

c = (JB̃(b1, 1))t+1 · [y0, y1, . . . , yt−1, 1]
T , (10)

where J is an anti-diagonal matrix with 1 as its nonzero
entries, and vector y = [y0, y1, . . . , yt−1]

T satisfies

Cy = f , (11)

where y = [y0, y1, . . . , yt−1]
T ,C = B̃t(b1, b2), and −f is a

vector formed by the first t entries of the t+1-th column of
B̃(b1, b2). Therefore, we can compute the 1D kernel k1(z)
using Eqn.(10) by solving y from Eqn.(11). Similarly, we
can solve for the kernel k2(z) by the following equation,

d = (JB̃(1, b2))t+1 · [y0, y1, . . . , yt−1, 1]
T , (12)

where d = [d0, d1, . . . , dt]. The complete algorithm for
finding the GCD between a 1D polynomial pair is shown as
follows:

Algorithm 2. (GCD-based 1D Kernel Estimation)
Input: b1(z), b2(z)
Output: k1(z), k2(z)

1. Apply Alg.1 to estimate the blur kernel degree t.
2. Build C and f according to the blur kernel degree t.
3. Compute y by solving Cy = f .
4. Compute kernel k1(z) according to Eqn.(10).
5. Compute kernel k2(z) according to Eqn.(12).

2D Kernel. To find the coprime kernels in a 2D CBP, we
first uniformly sample the polynomials in the first dimen-
sion (z1) on the unit circle within the complex domain. At
each sample point z1 = e−

2πgi
t+1 , we obtain a pair of 1D poly-

nomials in z2 and then estimate their coprime kernels using
Alg.2. For each CBP kernel, we compose the 1D results
at all sample points into two vectors and re-sample them in
z2 at points z2 = e−

2πhi
t+1 to form a kernel matrix Φ1 and

Φ2. We can change the order of our process by sampling in
z2 and estimating the 1D kernels in z1. This will produce
kernel matrix Ψ1 and Ψ2.

Note that Φ1 and Ψ1 can be viewed as evaluating the blur
kernel K1 in the 2D Fourier domain and we could apply in-
verse FFT to recoverK1. However, the 1D kernel estimated
at each sampled point is the actual one up to an (unknown)
scale. We thus need to further solve for the scaling factors.
Assume g and h are the indexes to an element in Φ1 and
Ψ1. We need to estimate the scaling factors ϕ1(g) for every



row in Φ1 and ψ1(h) for every column in Ψ1. Since for a
kernel matrix of size t × t, we have t2 sampled points and
2t unknowns (ϕ1(g) and ψ1(h)). Therefore, we form an
over-determined linear system and apply the SVD to solve
for the scaling factors. Finally we apply an inverse FFT to
the scale-corrected matrices to obtain the actual 2D kernels.
Alg. 3 describes how to compute kernel K1.

Algorithm 3. (GCD-based 2D Kernel Estimation)
Input: b1(z1, z2), b2(z1, z2), t
Output: blur kernel K1

1. for g = 0 : t

(a) Evaluate b1(z1, z2) and b2(z1, z2) at z1 = e−
2πgi
t+1 to

generate a pair of 1D polynomials.

(b) Apply Alg.2 to compute a scaled 1D blur kernel

c0(e
− 2πgi

t+1 )k1(e
− 2πgi

t+1 , z2).

(c) Evaluate the scaled kernel at z2 = e−
2πhi
t+1 , h =

0, 1, . . . , t, to generate the FFT evaluation of kernel
K1. We have

k1(e
− 2πgi

t+1 , e−
2πhi
t+1 ) = ϕ1(g)Φ1(g, h). (13)

2. Repeat step 1 but evaluate b1 and b2 first at fixed z2 positions,
then we have

k1(e
− 2πgi

t+1 , e−
2πhi
t+1 ) = ψ1(h)Ψ1(g, h). (14)

3. Combine Eq.(13) and (14) to compute the scaling factors
ϕ1(g) and ψ1(h) by solving the following linear system

ϕ1(g)Φ1(g, h)− ψ1(h)Ψ1(g, h) = 0, (15)

for g = 0, 1, . . . , t;h = 0, 1, . . . , t.

4. Compute kernel K1 by applying inverse FFT to

k1(e
− 2gπi

t+1 , e−
2hπi
t+1 ) =

1

2
(ϕ1(g)Φ1(g, h)+ψ1(h)Ψ1(g, h)).

(16)

Similarly, we can apply Alg.3 to compute the blur ker-
nel K2. With the recovered kernels, we can reconstruct the
latent image, e.g., via regularization-based methods. If we
use blur kernels that preserve high frequency such as the
ones used in the flutter shutter [20], we can in fact directly
apply FFT division to recover the latent image.

Recall that the blur kernel size (degree) in our case
is usually much smaller than the latent image resolution.
Therefore, our methods are much more efficient than previ-
ous methods based on recovering the latent image through
GCDs [19]. For instance, we only need to evaluate the poly-
nomials b1 and b2 at most t times along each dimension.
This smaller number of evaluations can dramatically reduce
the computation cost. In Alg.2 for 1D kernel estimation,
the number of operations for estimating kernels of degree
t are bounded by O(t3 ). Therefore, it takes O(t4 ) op-
erations to estimate the blur kernels in the 2D Alg.3. For
kernels of size up to O(n1/2 ), 2D kernel estimation there-
fore has complexity O(n2 ). To recover the latent image,

Image Size Kernel Size
11× 11 21× 21 31× 31 41× 41 51× 51

320× 240 0.23 0.53 0.97 2.13 4.33
640× 480 1.05 1.40 2.41 3.57 5.88
1024× 768 3.86 4.58 5.50 6.64 9.17

Table 1. The processing speed (in seconds) of our CBP kernel es-
timation and image deblurring algorithm. All results are obtained
on a PC with Intel Pentium D CPU of 3.00GHz and 6GB memory
using unoptimized MatLab code.

Figure 2. The processing pipeline of our CBP-based privacy-
protected video surveillance.

it takes O(n2 log(n)) operations for FFT division. Hence,
the overall complexity of our algorithm is O(n2 log(n)) for
recovering both the latent image and blur kernels in a CBP
of image resolution n × n. Table. 1 shows the processing
speed of our CBP-based deblurring algorithm at different
image and kernel resolutions.

4. CBP for Surveillance
Although image blurs have been commonly considered

adverse in computer vision, they also provide a natural
way for protecting the image contents and therefore can be
used for information hiding. For example, concern about
the potential for abuse and the general loss of privacy in
video surveillance has also grown along with the number
of surveillance cameras. Maintaining security in sensitive
environments without impinging on the privacy of the pub-
lic is a difficult balance to strike. Recently, the notion of
”blind vision” has been introduced for addressing such pri-
vacy issues. Recent efforts include privacy-protected face
detection [1], face recognition [8], image filtering [11], im-
age retrieval [23], and video surveillance [26, 6, 5]. In light
of these recent efforts, we present a scheme based on CBP
to achieve multi-level identity protection.

We develop a privacy-preserving surveillance scheme by
applying coprime blurs to the regular surveillance video da-
ta to form a public stream and a private stream. By having
their contents blurred, the streams retain the ability to re-
construct an unblurred image if and only if one has access
to both video streams simultaneously. Further, by carefully
choosing the blur kernels, the two streams will have differ-
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Figure 3. Decrypted results on video frames encrypted by our CBP scheme using different methods. Video data: courtesy of the EC Funded
CAVIAR project/IST 2001 37540.

ent degrees of blurring in order to provide users with lower
clearance less access to personally identifiable details while
still allowing behavior to be monitored.

Fig. 2 illustrates our CBP surveillance pipeline. We s-
trategically perform two blurring operations by convolving
each frame with two coprime kernels. At this state both
image streams are suitable for distribution to users accord-
ing to their clearance level. In the final stage an unblurred
version of the public video stream will be recovered by per-
forming our CBP-based deblurring algorithm.

Our public/private image terminology is reminiscent of
RSA public key cryptography scheme [18]. It utilizes an
asymmetrical key scheme that depends on a public key for
encryption and a private key for decryption. Even though
the system provides all users with the recipient’s public key
once the sender has encrypted the message with the pub-
lic key it can only be decrypted with the recipient’s private
key. Our approach applies the same principle by using a
large prime polynomial to blur private details within an im-
age. Since it is very difficult to conduct blind image decon-

volution on a single stream [16] and all but users with the
highest clearance have access to only one polynomial kernel
each image stream by itself acts as a public key.

Just as the security of the RSA algorithm depends on
keeping the original two large prime numbers a secret our
system relies on the two image streams being separate from
one another. The advantage of our approach is that by de-
fault an individual image stream respects the privacy of the
public and the second stream effectively acts as an addition-
al layer of privacy and as a private key. Therefore as long
as an eavesdropper does not have access to both streams the
unblurred image cannot be recovered. Moreover, since our
CBP model provides a ´́ partial`̀ data encryption by strategi-
cally blurring the image, low-clearance participants can still
analyze the image contents (behavior, motion, etc.), while
the data received by low-clearance participants would be
completely encrypted and visually useless when using the
RSA algorithm.

In Fig. 3, we use two randomly generated blur kernel-
s of size 21 × 21 to encrypt a surveillance video sequence



of resolution 384 × 288. We compare the deblurring re-
sults obtained by our coprime dual-deblur algorithm (row
4) and single image blind deconvolution [22] (row 2). The
video sequence captures a person walking towards the cam-
era. Results produced by single-image deblurring contains
strong ringing artifacts that degrade the video quality. By
using two blurred streams, our method is able to produce
very high quality results, e.g., it accurately reconstructs the
face of the subject.

5. Discussions
Limitations of Sparsity Prior. Often, a pair of coprime

kernels are both coprime and sparse. This indicates that we
can also use the sparsity prior for recovering the kernels.
We therefore further compare our CBP technique with the
sparsity prior based solution. To effectively model sparsity
of the kernel, we adopt a technique similar to the recent-
ly proposed hyper-Laplacian scheme [15]. We use the ℓ0.5
norm for the objective function (Eqn. 2) to emulate the s-
parsity prior. We then apply the Iterative Re-weighted Least
Squares (IRLS) method [24, 15] to find the optimal solution.

Fig. 3 (row 3) shows the recovered video sequence from
the sparsity prior using the same dual-blur video pair. Com-
pared with single-image blind deconvolution, the sparsity
prior solution is able to greatly suppress the ringing artifact-
s and produce reasonable results. However, it loses many
high frequency details compared to the CBP deblurring re-
sults. Similar artifacts can be observed in Fig.4, where
we blur the campus scene image using a pair of 35 × 35
hand-drawn kernels. In our experiments, we found that
the kernels produced by the sparsity prior tends to slight-
ly ´́ shrink`̀ the kernels since it forces the kernels to be s-
parse. This explains the loss of high frequency features in
the recovered latent image. Our method is able to preserve
details but exhibits some ringing artifacts. This is due to
the fact that the two hand-drawn kernels are not completely
coprime and our kernel estimation contains errors.

Flutter Shutter Implementation. To implement the
CBP, the simplest way is to use a process post capture to
implement the blur. But with such methods there is some
stage after capture where the image stream is not blurred
and therefore susceptible to eavesdropping. To address this
issue, we suggest an on-capture solution, e.g., by using the
fluttered shutter (FS) camera.

The FS camera developed by Raskar et al. [20] opens
and closes the shutter during the exposure process accord-
ing to a pre-determined sequence. The pseudo-random se-
quence creates a broad-band filter that preserves high fre-
quency details and is suitable for deconvolution. In the orig-
inal FS work, the shutter sequence is assumed to be known
[20]. We instead suggest using a pair of unknown but co-
prime shutter sequences. For example, these coprime shut-
ter sequences can be implemented by randomly generating

(a) (b)

(c) (d)

Open

Close

Shutter1

Time

Open

Close

Shutter2

Time

Figure 5. Constructing a CBP using a Flutter Shutter. (a) and (b)
emulate two captured images of a moving object under two ran-
domly chosen flutter shutter sequences. (c) shows our recovered
blur kernels. (d) shows our recovered latent image.

two shutter sequences since two random polynomials are
generally coprime [13].

Unlike the original FS camera that assumes static cam-
era and fast moving targets, we assume that the targets are
moving slowly and we emulate motion blurs on the camer-
a side: we can mount the camera on an oscillating motor
to introduce motion blurs during capture. Notice that the
path of oscillation does not need to be known but rather that
the flutter sequence be prime to each other. There are many
computer controlled motor systems that can reliably repro-
duce small controlled oscillations at common frame rates.

In Fig. 5, we emulate our proposed FS implementation
of CBP. We pick two random sequences (the top row of
Fig. 5) and synthesize a pair of blurred images under 2D
motions. We then directly apply our CBP deblurring tech-
nique to obtain the blur-free images. Fig.5(d) shows our
deblurred results. Since the FS sequences well preserves
high frequencies and they are highly coprime (due to ran-
dom sequence selection), we are able to accurately estimate
the two blur kernels and robustly deblur the images. We en-
vision that the FS camera can be directly used to produce
CBPs in the future. For example, we can mount a pair of
FS cameras on an oscillating motor to introduce artificial
motion blurs during capture. This will produce CBP video
streams that are suitable for privacy protection.

Limitations and Future Work. We have proposed a
novel CBP theory that has the potential to benefit a num-
ber of vision applications. We have by far focused on the
theoretical foundation of the CBP model and have only ap-
plied our theory to privacy-protected video surveillance. As
important part of future work, we plan to capture real dual
motion-blurred image pairs [7] and test the validity of copri-
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Figure 4. Deblurring results using different priors. The latent image is of resolution 182 × 273. We use two hand-drawn blur kernels of
size 35× 35. The recovered kernel is shown at the upper right corner in the result images. Error maps are shown in the last column.

mality on blur kernels caused by real camera motions. We
also plan to test the accuracy of our method under different
noise levels, intensity precisions (8 vs. 14 bit camera), and
registration errors between the image pair. At last, we plan
to explore the issue of kernel designs in both CBP-based
surveillance and Flutter Shutter based CBP emulation. The
choice of how the blur kernel is implemented is important
because it impacts the degree of blurs and the security of
our privacy-protected system. For example, it is possible
to construct a bank of blur kernels and randomly choose a
different one for each new frame in the stream.
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