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Abstract The ability to produce dynamic Depth of Field
effects in live video streams was until recently a quality
unique to movie cameras. In this paper, we present a com-
putational camera solution coupled with real-time GPU pro-
cessing to produceruntime dynamic Depth of Field effects.
We first construct a hybrid-resolution stereo camera with a
high-res/low-res camera pair. We recover a low-res disparity
map of the scene using GPU-based Belief Propagation and
subsequently upsample it via fast Cross/Joint Bilateral Up-
sampling. With the recovered high-resolution disparity map,
we warp the high-resolution video stream to nearby view-
points to synthesize a light field towards the scene. We ex-
ploit parallel processing and atomic operations on the GPU
to resolve visibility when multiple pixels warp to the same
image location. Finally, we generate dynamic Depth of Field
effects from the synthesized light field rendering. All pro-
cessing stages are mapped onto NVIDIA’s CUDA architec-
ture. Our system can produce Depth of Field effects with
arbitrary aperture sizes and focal depths for the resolution
of 640×480 at 15 fps.

Keywords Depth of Field· Belief Propagation· Cross
Bilateral Filtering· Light Field · CUDA

1 Introduction

Depth of field (DoF) effects are a useful tool in photography
and cinematography because of their aesthetic value. In pho-
tography, they have been used to emphasize objects by cre-
ating a shallow plane of focus around the subject while blur-
ring the rest of the scene. In cinematography, movie cam-
eras usedynamic DoF effects to shift the viewer’s attention
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Fig. 1 Depth of Field effect on a parking car scene using our system.

from the foreground to the background or vice versa. Pro-
ducing a high quality DoF, however, requires dedicated and
often expensive lens systems. Commodity lenses such as the
low cost Canon EF 50mm f/1.4 use a small number of aper-
ture blades and produce blur artifacts caused by the polygon
shaped apertures.

Varying the DoF effect and displaying the results in real-
time was until recently a quality unique to movie cameras.
For example, classical digital SLRs, while capable of mod-
ifying the DoF effect from shot to shot, can only produce
static images. Of late, high-end DSLRs can stream video,
but this capability comes at increased cost to the consumer
and still yields a non-ideal video platform. Additionally,cur-
rent DSLRs adjust focus using a ring on the lenses and DoF
adjustments tend to produce momentary tilting of the cap-
tured video. Movie cameras, while capable of runtime dy-
namic DoF effects, tend to be bulky and unwieldy in order
to accommodate complex corrective lenses arrays and stor-
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Fig. 2 The imaging hardware and the processing pipeline of our dynamic DoF video acquisition system. All processing modules are implemented
on NVIDIA’s CUDA to achieve real-time performance.

age media. Further, fully servoed studio lenses such as the
Canon DIGI SUPER 25 XS can cost tens of thousands of
dollars.

Our work is inspired by the recent light field imaging
systems [27,11,21,22,9]. The Stanford light field camera
array [23,24,19,20] is a two dimensional grid composed of
128 1.3 megapixel firewire cameras which stream live video
to a stripped disk array. The large volume of data generated
by this array forces the DoF effect to be rendered in post
processing rather than in real-time. Furthermore, the system
infrastructure such as the camera grid, interconnects, and
workstations are bulky, making it less suitable for on-site
tasks. The MIT light field camera array [25] uses a smaller
grid of 64 1.3 megapixel usb webcams instead of firewire
cameras and is capable of synthesizing real-time dynamic
DoF effects. Both systems, however, still suffer from spatial
aliasing because of the baseline between neighboring cam-
eras. The camera spacing creates appreciable differences be-
tween the pixel locations of the same scene point in neigh-
boring cameras producing an aliasing effect at the DoF bound-
ary when their images are fused.

In an attempt to reduce aliasing artifacts in light-field
based solutions, Ng [13] designed a light field camera that
combines a single DSLR with a microlenslet array. Each
lenslet captures the scene from a different viewpoint and the
lenslet array effectively emulates a camera array. By using
a large number of densely packed lenslets, one can signifi-
cantly reduce the spatial aliasing artifacts. It also, however,
comes at the cost of reduced resolution for each light field
view. A light field camera is typically paired with an ultra-
high-resolution static DSLR and is therefore not applicable
to video streaming.

Instead of using either a camera array or a microlenslet
array, we develop a novel hybrid stereo-lightfield solution.
Our goal is to first recover a high-resolution disparity map of
the scene and then synthesize a virtual light field for produc-
ing dynamic DoF effects. Despite recent advances in stereo
matching, recovering high-resolution depth/disparity maps

from images is still too expensive to perform in real-time.
We, therefore, construct a hybrid-resolution stereo camera
system by coupling a high-res/low-res camera pair. We re-
cover a low-res disparity map and subsequently upsample
it via fast cross bilateral filters. We then use the recovered
high-resolution disparity map and its corresponding video
frame to synthesize a light field. We implement a GPU-
based disparity warping scheme and exploit atomic opera-
tions to resolve visibility. To reduce aliasing, we presentan
image-space filtering technique that compensates for spatial
undersampling using MIPMAPPING. Finally, we generate
dynamic DoF effects using light field rendering. The com-
plete processing pipeline is shown in Figure 2.

We map all processing stages onto NVIDIA’s CUDA ar-
chitecture. Our system can produce DoF effects with arbi-
trary aperture sizes and focal depths for the resolution of
640×480 at 15 fps, as shown in the gsupplementary video.
This indicates that if we capture the video streams at the
same frame rate, we can display the refocused stream si-
multaneously. Our system thus provides a low-cost, com-
putational imaging solution for runtime refocusing, an ef-
fect that is usually the domain of expensive movie cameras
with servo-controlled lenses. Experiments on both indoor
and outdoor scenes show that our framework can robustly
handle complex, dynamic scenes and produce high quality
results. Figure 1 shows the result of our system on a parking
lot scene.

2 Hybrid-Resolution Stereo Camera

We first construct a hybrid stereo camera for recovering high-
resolution disparity map in real-time. Our system uses the
Pointgrey Flea2 camera pair to produce onehigh-resolution
color video stream and onelow-resolution gray-scale video
stream. We synchronize frame capture to within 125µs by
using the Pointgrey camera synchronization package. A unique
feature of our approach is coupling our Hybrid-Resolution
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Fig. 3 Our fast cross bilateral upsampling scheme synthesizes a high-resolution disparity map from the low-resolution BP stereo matching result
on CUDA.

Stereo Camera with a CUDA processing pipeline for real-
time DoF synthesis. Sawhney et al. proposed a hybrid stereo
camera for synthesis of very high resolution stereoscopic
image sequences [15]. Li et al. also proposed a hybrid cam-
era for motion deblurring and depth map super-resolution
[10]. Our configurations, however, have many more advan-
tages. First and foremost, it provides a multi-resolution stereo
matching solution that can achieve real-time performance
(Section 3). Second, the lower bandwidth requirement also
allows our system to be implemented for less expense on a
greater number of platforms. Stereo systems that stream two
videos at 15 fps and 640× 480 resolution can produce up
to 27.6 MB of data per second. By comparison, our hybrid-
resolution stereo camera only produces slightly more than
half that rate of data. Although our current implementation
uses Firewire cameras, the low bandwidth demands of our
solution make it possible to use a less expensive and more
common alternative like USB 2.0, even for streaming higher
resolutions such as 1024× 768. Finally, compared to off-
the-shelf stereo cameras such as Pointgrey’s Bumblebee, our
system has several advantages in terms of image quality,
cost, and flexibility. For example, the form factor of the Bum-
blebee forces its lenses to be small and it produces image
with severe radial distortion. Our system is also less expen-
sive ($1500 vs. $4000), and our setup allows us to dynam-
ically adjust the camera baseline to best fit different types
of scenes unlike the Bumblebee. We calibrate the stereo pair
using a planar checker board pattern the algorithm outlined
by Zhang [28]. It is not necessary, however, that the calibra-
tion be absolutely accurate as the disparity map is recovered
from a severely downsampled image pair. Our experiments
have shown that disparity map recovery using belief prop-
agation on the low-resolution image pair is not affected by
slight changes in the camera pair geometry. The intensity
calibration on the camera pair is performed prior to cap-
ture via histogram equalization. The mappings for these pro-

cesses are retained and applied to each incoming frame prior
to stereo matching.

3 Real-time Stereo Matching

In order to efficiently generate a high-resolution disparity
map from the input low-res/high-res image pairs, we imple-
ment a GPU-based stereo matching algorithm on CUDA.

3.1 CUDA Belief Propagation

Stereo matching is a long standing problem in computer vi-
sion [16]. Global methods based on belief propagation (BP)
[18] and graph-cut [5,1] have been known to produce highly
reliable and accurate results. These methods, however, are
more expensive when compared to local optimization meth-
ods such as dynamic programming. Fortunately, BP lends
itself well to parallelism on the GPU [2,4], where the core
computations can be performed at every image pixel in par-
allel on the device.

We utilize the methods presented by Felzenwalb [3] to
speed up our implementation without affecting the accuracy:
we use a hierarchical implementation to decrease the num-
ber of iterations needed for message value convergence; we
apply a checkerboard scheme to split the pixels when pass-
ing messages in order to reduce the number of necessary op-
erations and halve the memory requirements; and we utilize
a two-pass algorithm to reduce the running time to generate
each message fromO(n2) to O(n) using the truncated linear
model for data/smoothness costs.

Our CUDA BP implementation uses five separate ker-
nels, whereas the CPU only calls the appropriate kernels and
adjusts the current parameters/variables. A kernel is usedto
perform each of the following steps in parallel, with each
thread mapping to computations at a distinct pixel:
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Fig. 4 Comparison of the result with(right) and without(left) high fre-
quency compensation.

1. Compute the data costs for each pixel at each possible
disparity at the bottom level.

2. Iteratively compute the data cost for each pixel at each
succeeding level by aggregating the appropriate data costs
at the proceeding level.

3. For each level of the implementation:
(a) Compute the message values at the current ‘checker-

board’ set of pixels and pass the values to the alterna-
tive set. Repeat fori iterations, alternating between
the two sets.

(b) If not at the bottom level, copy message values at
each pixel to corresponding pixels of the succeeding
level.

4. Compute the disparity estimate at each pixel using the
data cost and current message values corresponding to
each disparity.

Table 1 shows the performance of our algorithm on some
of the Middlebury datasets at different resolutions. Despite
the acceleration on the GPU, we find that it is necessary to
use the lower resolution images (320×240 or lower) as in-
puts to our stereo algorithm in order to achieve real-time
performance.

Data sets
Resolutions

128×96 320×240 640×480
Teddy 13ms 78 ms 446 ms

Tsukuba 8ms 55ms 357 ms
Cones 11ms 69 ms 424 ms

Table 1 Performance of our CUDA stereo matching at different reso-
lutions. Note that the number of disparity levels is proportionally scaled
to the resolution. The levels of belief propagation are all set to 5 and
iterations per level are all set to 10.

In our experiments described in the rest of the paper, we
first smooth these low-resolution image pairs using a Gaus-
sian filter whereσ equals 1.0, then process them using our
implementation with a disparity range from 0 to 35, maxi-
mum data cost and smoothness costs of 15.0 and 1.7, respec-
tively, a data cost weight of 0.7 in relation to the smoothness
cost, with 5 levels of belief propagation and 10 iterations

Ground Truth Bicubic Gaussian Ours

Fig. 5 Comparison of our method and other upsampling schemes on
synthesize data. Both patches in the disparity map are upsampled from
a resolution of 30×25 to 450×375.

per level. Each kernel is processed on the GPU using thread
block dimensions of 32×4.

3.2 Fast Cross Bilateral Upsampling

Given a low-resolution disparity mapD′ and a high-resolution
image I, we intend to recover a high-resolution disparity
mapD using cross bilateral filters [26], where we apply a
spatial Gaussian filter toD′ and a color-space Gaussian fil-
ter toI. Assumingp andq are two pixels inI; W is the filter
window size;Ip andIq are the color ofp andq in I; andq′

is the corresponding pixel coordinate ofq in D′. We also use
σc andσd as constants to threshold the color difference and
filter size. We compute the disparity of pixelDp as:

Dp =
∑q∈W Gd(p,q)Gc(p,q)D′

q

Kp
, (1)

whereKp =∑q∈W Gd(p,q)Gc(p,q), Gd(p,q)= exp(−||p−q||
σd

),

andGc(p,q) = exp(−||Ip−Iq||
σc

).
The complexity of cross bilateral upsampling (CBU) is

O(NW ) whereN is the output image size andW is the filter
window size. Therefore the dominating factor to the process-
ing time is the number of pixels that need to be upsampled,
i.e., the resolution of the high-res image in the brute-force
implementation.

To accelerate our algorithm, we implement a fast CBU
scheme that effectively reduces the pixels to be upsampled.
Pariset al. [14] have shown that the mid and low frequency
components of an image remain approximately the same
when downsampled. We therefore treat the high-frequency
and the mid- and low- frequency components separately.
Our method first applies a Gaussian high-pass filter to iden-
tify the pixels of high frequency inI and then uses a standard
cross bilateral filter to estimate the disparity values at only
these pixels. We store the resulting disparity map asDhigh.
We call this step the high-frequency processing module. In
parallel, we downsample the color image to mid-resolution
Imid , apply CBU betweenD′ and Imid to obtain the mid-
res disparity mapDmid ; and subsequently upsampleDmid to
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Fig. 6 Comparison between our method and bicubic upsampling on
real scenes. The disparity map is upsampled from 320×240 to 640×
480. Our method preserves sharp edges and maintains smoothness,
which is critical to reliable DoF synthesis.

Dhigh using standard bilinear upsampling. We call this step
the mid- and low- frequency processing module. Finally, we
perform high frequency compensation byreplacing the dis-
parity value at the identified high frequency pixelsĨ with
Dhigh. Figure 3 shows the complete processing pipeline of
our algorithm. Compared with standard CBU, our scheme
only needs to upsample a small portion of the pixels and
hence is much faster.

3.3 CUDA Implementation.

We developed a GPU implementation of our algorithm on
the CUDA architecture to tightly integrate with our CUDA
BP stereo mapping algorithm. In our experiments, we found
that it is most efficient to assign one thread to upsample each
pixel in the disparity map. To further evaluate the through-
put of our implementation, we upsampled 128×128 dispar-
ity maps with 1280×1280 color images. Our implementa-
tion achieves a processing speed of 22 ms per frame or 14
ms per megapixel with a 5× 5 filter window, a significant
speedup to the CPU-based scheme [6] (which was 2 seconds
per megapixel).

To measure the accuracy of our scheme, we performed
experiments using various stereo data sets. In Figure 4, we
show using the Teddy data set that reintroducing high fre-
quency compensation produces sharper edges and smoother
surfaces. Figure 5 illustrates our results in three regionson
the Teddy data set. They are upsampled from 30× 25 to
450×375. Compared with standard bicubic or Gaussian up-
sampling, our method preserves fine details near the edges.
It is important to note that preserving edges while removing
noise in the disparity map is crucial to our DoF synthesis
as DoF effects are most apparent near the occlusion bound-
aries. Figure 6 gives the results on an indoor scene using
bicubic upsampling and our method. To further measure the
accuracy, we compared our estimation with the ground truth
by computing the mean squared errors over all pixels. Table
2 compares the error incurred by our method under different
upsampling scales on a variety of Middlebury stereo data

(a) (b)

(c) (d)

Fig. 7 Comparing results generated by image space blurring (a, c) and
our light field synthesis method (b, d). Our approach effectively re-
duces both the intensity leakage (a) and boundary discontinuity (c) ar-
tifacts.

sets, and the results show that our method is reliable and
accurate even with very high upsampling scales.

Data sets
Upsampling Scales

20×20 10×10 5×5 2×2
Teddy 31.14 10.96 5.24 3.92
Plastic 20.79 11.56 6.50 7.29

Monopoly 30.91 9.73 4.71 3.45
Books 26.01 15.60 9.12 6.25
Baby2 11.09 5.11 3.35 2.02
Aloe 73.96 23.14 11.36 4.49
Cones 49.42 33.64 10.82 4.24

Art 67.40 24.70 8.70 4.67

Table 2 Mean squared errors of our upsampled disparity maps with
different upsampling factors on the Middlebury data sets.

4 Real Time DoF Synthesis

Once we obtain the high-resolution disparity map, we set
out to synthesize dynamic DoF effects. Previous single im-
age based DoF synthesis algorithms attempt to estimate the
circle of confusion at every pixel and then apply the spatially
varying blurs on the image. These methods produce strong
bleeding artifacts at the occlusion boundaries, as shown in
Figure 7. In computer graphics, the distributed ray tracing
and the accumulation buffer techniques have long served as
the rendering method for dynamic DoF. Both approaches are
computationally expensive as they either require tracing out
a large number of rays or repeated rasterization of the scene.
Furthermore, to apply ray-tracing or accumulation buffer in
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our application requires constructing a triangulation of the
scene from the depth map, which would incur additional
computational cost.

In this paper, we adopt a similar approach to [27] by dy-
namically generating a light field from the high-resolution
video stream and its depth stream, as shown in Figure 8.
Our technique, however, differs in that we directly use the
disparity map for warping and filtering whereas [27] builds
upon the depth map. As follows, we briefly reiterate the
main steps of this light-field based DoF rendering technique.

4.1 The Lens Light Field

The light field is a well known image based rendering tech-
nique. It uses a set of rays commonly stored in a 2D array of
images to represent a scene. Each ray in the light field can
be indexed by an integer 4-tuple (s, t,u,v), where (s, t) is the
image index and (u,v) is the pixel index within a image.

Our first step generates a light field from the stereo pair.
The high resolution camera in our stereo pair is used as the
reference cameraR00.

To synthesize the light field, we use the high-resolution
camera in our stereo pair as the reference cameraR00 (i.e.,
(s, t) = (0,0)). We can then easily find all rays that pass
through a 3D pointA in terms of its disparityγ from the
reference view. AssumingA’s image is at pixel(u0,v0) in
the reference camera, we can compute its image (pixel coor-
dinate) in any light field cameraRst as:

(u,v) = (u0,v0)+ (s, t) · γ (2)

We useLout(s, t,u,v) to represent the out-of-lens light
field andLin(x,y,s, t) to represent the in-camera light field.
The image formed by a thin lens is proportional to the irradi-
ance at a pixela [17], which can be computed as a weighted
integral of the incoming radiance through the lens:

a(x,y)≈ ∑
(s,t)

Lin(x,y,s, t)cos4φ (3)

To map the in-lens light field to the out-of-lens light
field, it is easy to verify that pixela(x,y) on the sensor maps
to pixel(u0,v0) = (w−x,h−y) in R00. Therefore, if we want
to focus at the scene depth whose corresponding disparity is
γ f , we can find the pixel index in cameraRst using Equa-
tion 2. The irradiance ata can be approximated as:

a(x,y) = ∑
(s,t)

Lout(s, t,u0+ s · γ f ,v0+ t · γ f ) · cos4φ

To estimate the attenuation cos4 φ term, we can directly com-
pute cos4 φ for each ray(s, t,u,v). Notice that the ray has di-
rection(s, t,1). Therefore, we can compute cos4 φ = 1

(s2+t2+1)2
.
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Fig. 8 We synthesize an in-lens light field (left) from the recovered
high-resolution color image and disparity map (right).

4.2 CUDA Implementation

To synthesize the light field from the reference cameraR00

and its disparity map, we warp it onto the rest light field
cameras using Equation 2. A naive approach would be to
directly warp the RGB color of each pixela(u0,v0) in R00

onto other light field cameras. Specifically, usinga’s dispar-
ity value, we can directly compute its target pixel coordinate
in cameraRst using Equation 2. Since the CUDA architec-
ture supports parallel write, we can simultaneously warp all
pixels inR00 onto other light field cameras.

Although the warping process is straight forward, atten-
tion needs to be paid to the correctness of the light field.
Since multiple pixels inR00 may warp to the same pixela in
the light field cameraRst , a depth comparison is necessary
to ensure the correct visibility. Thus each light field cam-
era requires an additional depth buffer. To avoid write-write
conflicts in the warping process, we use atomic operations.
However, current graphics hardware cannot handle atomic
operations on both color and depth values at the same time.
To resolve this issue, we only choose to warp the disparity
value. We can easily index the RGB value for each light field
ray using the stored disparity value and the camera param-
eters. This solution requires less video memory as the RGB
value does not need to be stored in the light field.

Due to speed requirements, we can only render a small
light field with 36 to 48 cameras at a 640×480 image reso-
lution. The low spatial resolution leads to strong aliasingar-
tifacts due to undersampling. Since our reference view does
not contain information from the occluded regions, the warped
light field camera images will contain holes.

To reduce the image artifacts caused by undersampling
and occlusions, we develop a simple technique similar to the
cone tracing method to pre-filter the reference view [7]. Our
method is based on the observation that out-of-focus regions
exhibit most severe aliasing artifacts and occlusion artifacts
since they blend rays corresponding to different 3D points.
Our method compensates for undersampling by first blur-
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Fig. 9 Illustrations of two types of boundary artifacts. See Section 4.3
for details.

ring the out-of-focus rays and then blending them. A similar
concept has been used in the Fourier slicing photography
technique for generating a band-limited light field [12].

To simulate low-pass filtering in light field rendering, we
first generate a Mipmap from the reference image using a
3× 3 Gaussian kernel [8]. We then integrate the Gaussian
Mipmap into the light field ray querying process.

4.3 Our Technique vs. Single-Image Blurring

Compared with single-image methods that apply spatially
varying blurs, our light field based DoF synthesis technique
significantly reduces two types of boundary artifacts. In in-
stances where the camera focuses at the foreground, the ground
truth result should blend points on the background. Con-
versely, single-image filtering techniques use a large kernel
to blend the foreground and background pixels and hence,
produce theintensity leakage artifact. Consider a pointAb

lying on the background near the boundary, as shown in Fig-
ure 9. Our method attempts to blend rays originating from
the background. Due to occlusions, it can only access a por-
tion of them. Even if the background has consistent color or
texture, our technique still produces reasonable approxima-
tions.

In instances where the camera focuses on the background,
the ground truth result should blend both the foreground and
background points. Single-image filtering techniques, how-
ever, would considerAb in focus and hence directly use its
color as the pixel’s color. In this case, the transition from
the foreground to the background appears abrupt, causing
theboundary discontinuity artifacts. Consider a pointAb on
the background near the occlusion boundary in the image
as shown in Figure 9. Since rays originating from both the
foreground and background are captured by our synthesized
light field, our technique will produce the correct result.

Figure 7 compares the rendering results using our method
and the single-image filtering approach on an indoor scene.

(a) (b)

(c) (d)

Fig. 10 Results of synthesizing changing aperture sizes. The aperture
size gradually decreases from (a) to (d).

Our technique exhibits fewer visual artifacts compared to
the single-image filtering method, especially near the bound-
ary of the girl. When examining the boundary of the sweater,
the single-image method blurs the black sweater regions into
the background and thus causes color bleeding, whereas our
technique prevents such leakage. When focusing at the back-
ground, the single-image method exhibits discontinuous tran-
sitions from the girl to the background while our method
preserves the smooth transition.

Our method also correctly preserves the boundaries be-
tween the in-focus and out-of-focus regions when synthesiz-
ing changing aperture sizes. As shown in Figure 10, we fix
the focus at the woman. With the aperture fully open in (a),
the blur level decreases as we decrease the aperture size.

5 Results and Discussions

Our hybrid-resolution stereo system is connected to a work
station through a single PCI-E Firewire card. The worksta-
tion is equipped with a 3.2GHz Intel Core i7 970 CPU, 4GB
memory and an NVIDIA Geforce GTX 480 Graphic Card
with 1.5GB memory. We implement all three processing mod-
ules (the disparity map estimation, fast CBU, dynamic DoF
rendering) using NVIDIA’s CUDA 3.1 with compute capa-
bility 2.0. Our system runs at the resolution of 640× 480
with 15 fps.

We have conducted extensive experiments on both in-
door and outdoor scenes. Some of our video results (live
capture) can be found in the supplementary video. We ex-
pect to submit a demo to CGI ’11 to demonstrate our sys-
tem. A crucial step in our real-time stereo matching module
is choosing the proper parameters (e.g., the weight for the
smooth/compatible terms of the energy function) to fit dif-
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(a) (b) (c) (d)

Fig. 11 Screen captures of live video streams produced by our systemon both indoor (top two rows) and outdoor (bottom row) scenes.

ferent types of scenes (indoor vs. outdoor). We have devel-
oped an interface to dynamically change the parameters, as
shown in the supplementary video.

We first demonstrate our system on indoor scenes with
controlled lighting. Figure 11 row 1 shows four frames cap-
tured by our system of a girl drinking coffee while reading.
The coffee cup in the scene is textureless and very smooth.
Our fast CBU scheme, however, still preserves the disparity
edges, as shown in Figure 11 row 1. We then dynamically
change the depth of the focal plane: column (a) and column
(d) focus on the front of the table, column (b) focuses on
the girl, and column (c) focuses on the background. Notice
how the blur varies and the in-focus regions fade into the
out-of-focus regions.

Figure 11 row 2 displays a scene of a girl moving a toy
car on a table. The surface of the car is specular, and the
background and car have similar colors, making it challeng-
ing to prevent the disparity of the background from merging
with the disparity of the car. Moreover, the motion of the car
is towards the camera, causing the body of the car to have
several different disparities. This makes labeling each pixel
using stereo correspondence methods even more difficult.
Nevertheless, our algorithm preserves the edges of the car
when it is in focus and correctly blurs portions of the scene
outside of the focal plane. Our system performs well indoors
because the background distance is often limited, therefore
allowing one baseline to produce accurate disparity labels

for the entire scene. In addition, artificially lit indoor scenes
with diffuse walls and surfaces tend to have moderate dy-
namic range and have few poorly lit or saturated regions.

Indoor scenes undoubtedly aid the performance of our
system. Our experiments on outdoor scenes, however, show
promising results as well. Row 3 of Figure 11 shows an out-
door sequence with a distant background under dynamically
varying lighting conditions. Notice that in column (a), the
image is brighter than the rest of the frames in the sequence
and the background contains noticeable shadows. In addi-
tion to incoherent illumination, large portions of the scene
such as the sky and the ground are textureless, making it
difficult to achieve robust stereo matching. Since our sys-
tem allows us to dynamically change the camera baseline,
we use its real-time feedback to tune the parameters and in-
crease the camera baseline to obtain a satisfactory disparity
map, as shown in the supplementary video. The use of large
baseline may lead to holes near the occlusion boundaries on
full-resolution images. These holes are, however, less sig-
nificant in low-resolution stereo pairs and our upsampling
scheme is able to borrow information from the color image
to fill in the holes. The extracted frames show that we are
able to correctly change the focus between the moving tar-
gets in both foreground and background.
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6 Conclusion and Future Work

We have presented an affordable stereo solution for produc-
ing high quality live DoF effects. Our system shows promis-
ing results on indoor and outdoor scenes although it still has
several limitations. First, 15 fps is a low frame rate and our
resolution of 640×480 precludes our system from immedi-
ately being used in high quality HD video applications. Us-
ing multiple GPUs may address this problem as they allow
greater exploitation of inherent parallelism in our computa-
tional pipeline. Second, although the high quality sensor and
lens system on our camera pair significantly reduces image
noise and optical distortions, this comes with a higher price.
While less expensive than existing commercial movie cam-
eras, our system is still twice the cost of most base level
video cameras. Integrating existing real-time techniquesto
correct optical distortions and sensor noise into our pipeline
would make it feasible to use lower cost webcams instead of
the firewire Flea cameras.

Our future efforts include adapting our system to func-
tional applications such as privacy protected surveillance.
We plan to demonstrate the usefulness of our system in ur-
ban spaces to limit the focal plane to public areas, e.g., the
sidewalks, while blurring more distant private areas like the
interior of homes. Current urban surveillance networks are
augmented with real-time recognition algorithms to detect
illegal activity. When illegal activity is detected, our system
could provide more information to law enforcement by re-
moving the DoF effect using the stored disparity map stream
for subsequent scene reconstruction. We can also leverage
future gains in ubiquitous computing to produce a truly mo-
bile platform which utilizes, for example, two camera phones
for producing DSLR quality imagery.
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