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Abstract The ability to produce dynamic Depth of Field
effects in live video streams was until recently a quality
unique to movie cameras. In this paper, we present a com-,
putational camera solution coupled with real-time GPU pro-
cessing to produceuntime dynamic Depth of Field effects.
We first construct a hybrid-resolution stereo camera with a
high-res/low-res camera pair. We recover a low-res digpari
map of the scene using GPU-based Belief Propagation anc
subsequently upsample it via fast Cross/Joint Bilateral Up
sampling. With the recovered high-resolution disparityma
we warp the high-resolution video stream to nearby view-
points to synthesize a light field towards the scene. We ex-
ploit parallel processing and atomic operations on the GPU
to resolve visibility when multiple pixels warp to the same
image location. Finally, we generate dynamic Depth of Field
effects from the Synthesized I|ght field I’endering. All pro- Fig. 1 Depth of Field effect on a parking car scene using our system.
cessing stages are mapped onto NVIDIA's CUDA architec-

ture. Our system can produce Depth of Field effects with

arbitrary aperture sizes and focal depths for the resaiutiofrom the foreground to the background or vice versa. Pro-
of 640x480 at 15 fps. ducing a high quality DoF, however, requires dedicated and
often expensive lens systems. Commodity lenses such as the
low cost Canon EF 50mm /1.4 use a small number of aper-
ture blades and produce blur artifacts caused by the polygon
shaped apertures.

Keywords Depth of Field- Belief Propagation Cross
Bilateral Filtering- Light Field - CUDA

_ Varying the DoF effect and displaying the results in real-
1 Introduction time was until recently a quality unique to movie cameras.

i ) For example, classical digital SLRs, while capable of mod-
Depth of field (DoF) effects are a useful tool in photographylfying the DoF effect from shot to shot, can only produce

and cinematography because of their aesthetic value. In phgtatic images. Of late, high-end DSLRs can stream video,

tography, they have been used to emphasize objects by iy 1his capability comes at increased cost to the consumer

ating a shallow plane of focus around the subject while blur-and still yields a non-ideal video platform. Additionaltyr-
ring the rest of the scene. In cinematography,

_ : _ MOVIE CaMyant DSLRs adjust focus using a ring on the lenses and DoF
eras usalynamic DoF effects to shift the viewer’s attention adjustments tend to produce momentary tilting of the cap-
University of Delaware tured video. Movie cameras, while capable of runtime dy-
Newark, DE, 19716 namic DoF effects, tend to be bulky and unwieldy in order
E-mail: {zyu,thorpe,xyu,grauerg feli, y@cis.udel.edu to accommodate complex corrective lenses arrays and stor-
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Fig. 2 The imaging hardware and the processing pipeline of ourmjo®oF video acquisition system. All processing modulesiarplemented
on NVIDIA's CUDA to achieve real-time performance.

age media. Further, fully servoed studio lenses such as tHeom images is still too expensive to perform in real-time.
Canon DIGI SUPER 25 XS can cost tens of thousands ofVe, therefore, construct a hybrid-resolution stereo camer
dollars. system by coupling a high-res/low-res camera pair. We re-
Our work is inspired by the recent light field imaging cover a low-res disparity map and subsequently upsample
systems [27,11,21,22,9]. The Stanford light field camerdl via fast cross bilateral filters. We then use the recovered
array [23,24,19,20] is a two dimensional grid composed ofigh-resolution disparity map and its corresponding video
128 1.3 megapixel firewire cameras which stream live videdrame to synthesize a light field. We implement a GPU-
to a stripped disk array. The large volume of data generatesed disparity warping scheme and exploit atomic opera-
by this array forces the DoF effect to be rendered in postions to resolve visibility. To reduce aliasing, we presamt
processing rather than in real-time. Furthermore, theesyst image-space filtering technique that compensates foradpati
infrastructure such as the camera grid, interconnects, ar#ndersampling using MIPMAPPING. Finally, we generate
workstations are bulky, making it less suitable for on-sitedynamic DoF effects using light field rendering. The com-
tasks. The MIT light field camera array [25] uses a smallePlete processing pipeline is shown in Figure 2.
grid of 64 1.3 megapixel usb webcams instead of firewire We map all processing stages onto NVIDIA's CUDA ar-
cameras and is capable of synthesizing real-time dynamighitecture. Our system can produce DoF effects with arbi-
DoF effects. Both systems, however, still suffer from sgati trary aperture sizes and focal depths for the resolution of
aliasing because of the baseline between neighboring carfi40x 480 at 15 fps, as shown in the gsupplementary video.
eras. The camera spacing creates appreciable differeaces @his indicates that if we capture the video streams at the
tween the pixel locations of the same scene point in neighsame frame rate, we can display the refocused stream si-
boring cameras producing an aliasing effect at the DoF boumaultaneously. Our system thus provides a low-cost, com-
ary when their images are fused. putational imaging solution for runtime refocusing, an ef-
In an attempt to reduce aliasing artifacts in Iight-fieldfe_Ct that is usually the domain of expensive movie cameras
based solutions, Ng [13] designed a light field camera thapith servo-controlled lenses. Experiments on both indoor
combines a single DSLR with a microlenslet array. Eactfind outdoor scenes show that our framework can robustly
lenslet captures the scene from a different viewpoint aad th"andle complex, dynamic scenes and produce high quality
lenslet array effectively emulates a camera array. By usinﬂ[fsuns- Figure 1 shows the result of our system on a parking
a large number of densely packed lenslets, one can signifit SCEne.
cantly reduce the spatial aliasing artifacts. It also, hawe
comes at the cost of reduced resolution for each light field
view. A light field camera is typically paired with an ultra- 2 Hyprid-Resolution Stereo Camera
high-resolution static DSLR and is therefore not applieabl
to video streaming. We first construct a hybrid stereo camera for recovering-high
Instead of using either a camera array or a microlenslatesolution disparity map in real-time. Our system uses the
array, we develop a novel hybrid stereo-lightfield solution Pointgrey Flea2 camera pair to produce aigh-resolution
Our goal is to first recover a high-resolution disparity mép o color video stream and orlew-resolution gray-scale video
the scene and then synthesize a virtual light field for preducstream. We synchronize frame capture to within g2%by
ing dynamic DoF effects. Despite recent advances in steraasing the Pointgrey camera synchronization package. Augniq
matching, recovering high-resolution depth/disparitypsia feature of our approach is coupling our Hybrid-Resolution
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Fig. 3 Our fast cross bilateral upsampling scheme synthesizegharbgolution disparity map from the low-resolution BRretematching result
on CUDA.

Stereo Camera with a CUDA processing pipeline for realcesses are retained and applied to each incoming frame prior
time DoF synthesis. Sawhney et al. proposed a hybrid sterdo stereo matching.

camera for synthesis of very high resolution stereoscopic

image sequences [15]. Li et al. also proposed a hybrid cam-

era for motion deblurring and depth map super—resolutio% Real-time Stereo Matching

[10]. Our configurations, however, have many more advan-

tages. First and foremost, it provides a multi-resolutienen | order to efficiently generate a high-resolution disparit

matching solution that can achieve real-time performanc?nap from the input low-res/high-res image pairs, we imple-

(Section 3). Second, the lower bandwidth requirement alsg, ot 4 GPU-based stereo matching algorithm on CUDA.
allows our system to be implemented for less expense on a

greater number of platforms. Stereo systems that stream two

videos at 15 fps and 649480 resolution can produce up ) ]
to 27.6 MB of data per second. By comparison, our hybrid-3-1 CUDA Belief Propagation
resolution stereo camera only produces slightly more than

half that rate of data. Although our current implementation>t€"€0 maiching is a long standing problem in computer vi-

uses Firewire cameras, the low bandwidth demands of oo [16]. Global methods based on belief propagation (BP)
solution make it possible to use a less expensive and mot&8] and graph-cut[5, 1] have been known to produce highly
common alternative like USB 2.0, even for streaming highef€liable and accurate results. These methods, however, are
resolutions such as 1024768. Finally, compared to off- MOre expensive whe_n compared t_o local optimization meth-
the-shelf stereo cameras such as Pointgrey’s Bumblebee, dfiS Such as dynamic programming. Fortunately, BP lends
system has several advantages in terms of image qua“&self well'to parallelism on the GPU [2,4], Where'the'core
cost, and flexibility. For example, the form factor of the Bum cOmputations can be performed at every image pixel in par-
blebee forces its lenses to be small and it produces imagdle! on the device.

with severe radial distortion. Our system is also less expen e utilize the methods presented by Felzenwalb [3] to
sive ($1500 vs. $4000), and our setup allows us to dynarrﬁpeed up our implementation without affecting the accuracy
ically adjust the camera baseline to best fit different typed/€ USe & hierarchical implementation to decrease the num-
of scenes unlike the Bumblebee. We calibrate the stereo pdi€r Of iterations needed for message value convergence; we
using a planar checker board pattern the algorithm outline@PPly & checkerboard scheme to split the pixels when pass-
by Zhang [28]. It is not necessary, however, that the calibraind messages in order to reduce the number of necessary op-
tion be absolutely accurate as the disparity map is recdverérations and halve the memory requirements; and we utilize
from a severely downsampled image pair. Our experimentd two-pass algorithm to reduce the running time to generate
have shown that disparity map recovery using belief prop€ach message fro@(n?) to O(n) using the truncated linear
agation on the low-resolution image pair is not affected bymodel for data/smoothness costs.

slight changes in the camera pair geometry. The intensity Our CUDA BP implementation uses five separate ker-
calibration on the camera pair is performed prior to caphels, whereas the CPU only calls the appropriate kernels and

ture via histogram equalization. The mappings for these prcadjusts the current parameters/variables. A kernel is tesed
perform each of the following steps in parallel, with each

thread mapping to computations at a distinct pixel:
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Fig. 4 Comparison of the result with(right) and without(left) hifye-

quency compensation. Fig. 5 Comparison of our method and other upsampling schemes on

synthesize data. Both patches in the disparity map are ypedrfrom
a resolution of 3k 25 to 450x 375.

1. Compute the data costs for each pixel at each possible
disparity at the bottom level. per level. Each kernel is processed on the GPU using thread
2. lteratively compute the data cost for each pixel at eaclyock dimensions of 32 4.
succeeding level by aggregating the appropriate data costs
at the proceeding level.
3. For each level of the implementation: 3.2 Fast Cross Bilateral Upsampling
(a) Compute the message values at the current ‘checker-
board’ set of pixels and pass the values to the alternasiven a low-resolution disparity mdp and a high-resolution
tive set. Repeat foriterations, alternating between imagel, we intend to recover a high-resolution disparity
the two sets. map D using cross bilateral filters [26], where we apply a
(b) If not at the bottom level, copy message values aspatial Gaussian filter tB’ and a color-space Gaussian fil-
each pixel to corresponding pixels of the succeedinder tol. Assumingp andq are two pixels in; W is the filter
level. window size;l, andlq are the color ofp andqin |; andd
4. Compute the disparity estimate at each pixel using thés the corresponding pixel coordinateapifh D’. We also use
data cost and current message values corresponding ¢ andgy as constants to threshold the color difference and

each disparity. filter size. We compute the disparity of pixe}, as:

Table 1 shows the performance of our algorithm on som% ¥ gew Ga (P, d)Ge(p,g)Dg )
of the Middlebury datasets at different resolutions. Despi Kp ’
the acceleration on the GPU, we find that it is necessary to _lip—ql
use the lower resolution images (32240 or lower) as in-  WhereKp =3 qew Ga (P, 4)Ge(P, ), Ga (P, 6) = &xp(—5=),

puts to our stereo algorithm in order to achieve real-timeandG.(p,q) = @(p(%).

performance. The complexity of cross bilateral upsampling (CBU) is
O(NW) whereN is the outputimage size aiil is the filter
window size. Therefore the dominating factor to the process

Resolutions . . . .
Data setS\—»a-—o5T350% 240 | 640x 480 ing time is the number of pixels that need to be upsampled,
Teddy 13ms 78 ms 446 ms i.e., the resolution of the high-res image in the brute-dorc
Tsukuba 8ms 55ms 357 ms implementation.
Cones | 1lms 69ms | 424ms To accelerate our algorithm, we implement a fast CBU

Table 1 Performance of our CUDA stereo matching at different reso-SCh_eme that effectively reduces the p_lxels to be upsampled.
lutions. Note that the number of disparity levels is projporally scaled ~ Pariset al. [14] have shown that the mid and low frequency
to the resolution. The levels of belief propagation are elite 5 and ~ components of an image remain approximately the same
iterations per level are all set to 10. when downsampled. We therefore treat the high-frequency
and the mid- and low- frequency components separately.
Our method first applies a Gaussian high-pass filter to iden-
In our experiments described in the rest of the paper, wéfy the pixels of high frequency ihand then uses a standard
first smooth these low-resolution image pairs using a Gauseross bilateral filter to estimate the disparity values dy on
sian filter whereo equals 1.0, then process them using ouithese pixels. We store the resulting disparity mapgagh.
implementation with a disparity range from 0 to 35, maxi-We call this step the high-frequency processing module. In
mum data cost and smoothness costs of 15.0 and 1.7, respgerallel, we downsample the color image to mid-resolution
tively, a data cost weight of 0.7 in relation to the smootisnes|jq, apply CBU betweerD’ and lig to obtain the mid-
cost, with 5 levels of belief propagation and 10 iterationsres disparity maDyiq; and subsequently upsamidg,q to
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Fig. 6 Comparison between our method and bicubic upsampling on
real scenes. The disparity map is upsampled from>3280 to 640x

480. Our method preserves sharp edges and maintains sraesthn
which is critical to reliable DoF synthesis.

Dhigh Using standard bilinear upsampling. We call this step
the mid- and low- frequency processing module. Finally, we
perform high frequency compensation t@placing the dis- ) (d)
parity value at the identified high frequency pixélsvith
Drigh. Figure 3 shows the complete processing pipeline ofig. 7 Comparing results generated by image space blurring (ad) a
our algorithm. Compared with standard CBU, our schem@Ur light field synthesis method (b, d). Our approach efvedyi re-

. . uces both the intensity leakage (a) and boundary disagtytic) ar-
only needs to upsample a small portion of the pixels an(ﬁ

. facts.
hence is much faster.

sets, and the results show that our method is reliable and
accurate even with very high upsampling scales.

3.3 CUDA Implementation.

Upsampling Scales

We developed a GPU implementation of our algorithm on Data sets | —5->5T10x 10 | 5x5 [ 2x2
the CUDA architecture to tightly integrate with our CUDA Teddy 3114 | 1096 | 524 | 3.92
BP stereo mapping algorithm. In our experiments, we found Plastic | 20.79 | 11.56 | 6.50 | 7.29

Monopoly | 30.91 9.73 4.71 | 3.45

that |t_|s most_efflm_ent to assign one thread to upsample each Books 2601 | 1560 | 9.12 | 625
pixel in the disparity map. To further evaluate the through- Baby2 11.09 511 | 3.35 | 2.02
put of our implementation, we upsampled 2828 dispar- Aloe 73.96 | 23.14 | 11.36 | 4.49
ity maps with 1280« 1280 color images. Our implementa- Cones | 4942 | 3364 | 10.82| 4.24

Art 67.40 2470 | 8.70 | 4.67

tion achieves a processing speed of 22 ms per frame or 14
ms per megapixel with a 5 5 filter WlndOW,. a significant Table 2 Mean squared errors of our upsampled disparity maps with
speedup to the CPU-based scheme [6] (which was 2 secongi§erent upsampling factors on the Middlebury data sets.
per megapixel).

To measure the accuracy of our scheme, we performed
experiments using various stereo data sets. In Figure 4, we
show using the Teddy data set that reintroducing high fre-
guency compensation produces sharper edges and smootheReal Time DoF Synthesis
surfaces. Figure 5 illustrates our results in three regons
the Teddy data set. They are upsampled frork3&b to  Once we obtain the high-resolution disparity map, we set
450x 375. Compared with standard bicubic or Gaussian upeut to synthesize dynamic DoF effects. Previous single im-
sampling, our method preserves fine details near the edgesge based DoF synthesis algorithms attempt to estimate the
Itis important to note that preserving edges while removingircle of confusion at every pixel and then apply the splgtial
noise in the disparity map is crucial to our DoF synthesissarying blurs on the image. These methods produce strong
as DoF effects are most apparent near the occlusion bounbleeding artifacts at the occlusion boundaries, as shown in
aries. Figure 6 gives the results on an indoor scene usingigure 7. In computer graphics, the distributed ray tracing
bicubic upsampling and our method. To further measure thand the accumulation buffer techniques have long served as
accuracy, we compared our estimation with the ground trutthe rendering method for dynamic DoF. Both approaches are
by computing the mean squared errors over all pixels. Tableomputationally expensive as they either require tracirg o
2 compares the error incurred by our method under differerd large number of rays or repeated rasterization of the scene
upsampling scales on a variety of Middlebury stereo dat&urthermore, to apply ray-tracing or accumulation buffer i
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our application requires constructing a triangulationhad t =
scene from the depth map, which would incur additional

i

; Py
computational cost. =Color _ Disparity
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In this paper, we adopt a similar approach to [27] by dy- S U -

namically generating a light field from the high-resolution
video stream and its depth stream, as shown in Figure 8. pex.y)
Our technique, however, differs in that we directly use the
disparity map for warping and filtering whereas [27] builds
upon the depth map. As follows, we briefly reiterate the
main steps of this light-field based DoF rendering technique

Dynamic Light Field Generation
N N g

) ) Fig. 8 We synthesize an in-lens light field (left) from the recodkere
4.1 The Lens Light Field high-resolution color image and disparity map (right).

The light field is a well known image based rendering tech- _
nique. It uses a set of rays commonly stored in a 2D array of-2 CUDA Implementation

images to represent a scene. Each ray in the light field can ) ) ]
be indexed by an integer 4-tuplet( u,v), where &,1) is the To synthesize the light field from the reference cani®ya

image index andy( V) is the pixel index within a image. and its disparity map, we warp it onto the rest light field

Our first step generates a light field from the stereo pairc_:ameras using Equation 2. A naive approach would be to

The high resolution camera in our stereo pair is used as plirectly warp the.z RGB color of each'pixa(uo,'vo) ip Roo
reference camerByo. onto other light field cameras. Specifically, usaig dispar-

To synthesize the light field, we use the high-resolution'ty value, we can directly compute its target pixel coordina

camera in our stereo pair as the reference camgydi.e. In cameraRy using Equa_tion 2. Sincg the CUDA architec-
(st) = (0,0)). We can then easily find all rays that passture supports parallel write, we can simultaneously walrp al

through a 3D poinfA in terms of its disparityy from the pixels inRoo onto other light field cgmera;.
reference view. Assuming’s image is at pixelUo, Vo) in Although the warping process is straight forward, atten-

the reference camera, we can compute its image (pixel coog-c_’n needls_ t? b? plal_d to the correctne;s of the I_|gh|_t field.
dinate) in any light field camerg as: ince multiple pixels ilRyp may warp to the same pixalin

the light field camer&y, a depth comparison is necessary
(u,v) = (Ug,Vo) + (S,t) -y (2) to ensure the correct visibility. Thus each light field cam-
era requires an additional depth buffer. To avoid writetgvri
We uselou (s t,u,v) to represent the out-of-lens light conflicts in the warping process, we use atomic operations.
field andLin(x,Y,s,t) to represent the in-camera light field. However, current graphics hardware cannot handle atomic
The image formed by a thin lens is proportional to the irradi-operations on both color and depth values at the same time.
ance at a pixed [17], which can be computed as a weightedTo resolve this issue, we only choose to warp the disparity

integral of the incoming radiance through the lens: value. We can easily index the RGB value for each light field
ray using the stored disparity value and the camera param-
a(x,y) ~ z Lin(x,y,s,t)cos*p (3) eters. This solution requires less video memory as the RGB
(st) value does not need to be stored in the light field.

) . ) . Due to speed requirements, we can only render a small
_To map the in-lens light field to the out-of-lens ight o+ fielq with 36 to 48 cameras at a 640480 image reso-
field, it is easy to verify that pixed(x,y) on the sensor maps | ion The low spatial resolution leads to strong aliasing
to pixel (U, Vo) = (W—X,h—y) in Roo. Therefore, if we want tifacts due to undersampling. Since our reference view does

to focus at the scene depth whose corresponding disparity j .o ntain information from the occluded regions, the \eairp
vi, we can find the pixel index in cameRy using Equa- iyt field camera images will contain holes.

tion 2. The irradiance ai can be approximated as: To reduce the image artifacts caused by undersampling
a(x,y) = z Low (S.t,Uo+S- Vf, Vot yr)- cos*o and occlu_sions, we develop g simple technique ;imilar tothe
) cone tracing method to pre-filter the reference view [7]. Our
method is based on the observation that out-of-focus region
To estimate the attenuation ¢gsterm, we can directly com-  exhibit most severe aliasing artifacts and occlusionautsf
pute coé g for each ray(st,u,v). Notice that the ray has di- since they blend rays corresponding to different 3D points.

rection(s,t, 1). Therefore, we can compute Cags= m Our method compensates for undersampling by first blur-
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Fig. 9 lllustrations of two types of boundary artifacts. See Sscd.3
for details.
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ring the out-of-focus rays .and then blgndin_g_them. A Sirn"arFig. 10 Results of synthesizing changing aperture sizes. Thelapert
conce_pt has been us_ed in the F_ou_rler s_hcmg photograph\;(Ze gradually decreases from (a) to (d).
technique for generating a band-limited light field [12].
To simulate low-pass filtering in light field rendering, we
first generate a Mipmap from the reference image using &ur technique exhibits fewer visual artifacts compared to
3 x 3 Gaussian kernel [8]. We then integrate the Gaussiathe single-image filtering method, especially near the lbeun
Mipmayp into the light field ray querying process. ary of the girl. When examining the boundary of the sweater,
the single-image method blurs the black sweater regions int
the background and thus causes color bleeding, whereas our
4.3 Our Technique vs. Single-Image Blurring technique prevents such leakage. When focusing at the back-
ground, the single-image method exhibits discontinuarstr
Compared with single-image methods that apply spatiallgitions from the girl to the background while our method
varying blurs, our light field based DoF synthesis techniqueyreserves the smooth transition.
significantly reduces two types of boundary artifacts. min  Our method also correctly preserves the boundaries be-
stances where the camera focuses at the foreground, thedyraveen the in-focus and out-of-focus regions when synthesiz
truth result should blend points on the background. Coning changing aperture sizes. As shown in Figure 10, we fix
versely, single-image filtering techniques use a largeddern the focus at the woman. With the aperture fully open in (a),

to blend the foreground and background pixels and henceqe blur level decreases as we decrease the aperture size.
produce theantensity leakage artifact. Consider a poindy,

lying on the background near the boundary, as shown in Fig-

ure 9. Our method attempts to blend rays originating frons Results and Discussions

the background. Due to occlusions, it can only access a por-

tion of them. Even if the background has consistent color oOur hybrid-resolution stereo system is connected to a work

texture, our technique still produces reasonable appra@xim station through a single PCI-E Firewire card. The worksta-

tions. tion is equipped with a 3.2GHz Intel Core i7 970 CPU, 4GB
Ininstances where the camera focuses on the backgroungmory and an NVIDIA Geforce GTX 480 Graphic Card

the ground truth result should blend both the foreground andith 1.5GB memory. We implement all three processing mod-

background points. Single-image filtering techniques,-howules (the disparity map estimation, fast CBU, dynamic DoF

ever, would considef,, in focus and hence directly use its rendering) using NVIDIA's CUDA 3.1 with compute capa-

color as the pixel’s color. In this case, the transition frombility 2.0. Our system runs at the resolution of 64@80

the foreground to the background appears abrupt, causimgth 15 fps.

the boundary discontinuity artifacts. Consider a poi, on We have conducted extensive experiments on both in-

the background near the occlusion boundary in the imagdoor and outdoor scenes. Some of our video results (live

as shown in Figure 9. Since rays originating from both thecapture) can be found in the supplementary video. We ex-

foreground and background are captured by our synthesizgzbct to submit a demo to CGI '11 to demonstrate our sys-

light field, our technique will produce the correct result.  tem. A crucial step in our real-time stereo matching module
Figure 7 compares the rendering results using our methdsl choosing the proper parameters (e.g., the weight for the

and the single-image filtering approach on an indoor scensmooth/compatible terms of the energy function) to fit dif-
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(a) (b) (©) (d)

Fig. 11 Screen captures of live video streams produced by our systenoth indoor (top two rows) and outdoor (bottom row) scenes

ferent types of scenes (indoor vs. outdoor). We have devefor the entire scene. In addition, artificially lit indoorestes
oped an interface to dynamically change the parameters, agth diffuse walls and surfaces tend to have moderate dy-
shown in the supplementary video. namic range and have few poorly lit or saturated regions.

We first demonstrate our system on indoor scenes with
controlled lighting. Figure 11 row 1 shows four frames cap-
tured by our system of a girl drinking coffee while reading.

The coffee cup in the scene is textureless and very smooth. Indoor scenes undoubtedly aid the performance of our

Our fast CBU sche_me_, however, still preserves the disparitgystem_ Our experiments on outdoor scenes, however, show
edges, as shown in Figure 11 row 1. We then dyn"’“mcalh()romising results as well. Row 3 of Figure 11 shows an out-
change the depth of the focal plane: column (a) and colum oor sequence with a distant background under dynamically
(a) chus on the front of the table, column (b) focuses pr\/arying lighting conditions. Notice that in column (a), the
the girl, and column © focu;es on the bgckground_. Noticg age is brighter than the rest of the frames in the sequence
how the blur varles and the in-focus regions fade into thEémd the background contains noticeable shadows. In addi-
out-of-focus regions. tion to incoherent illumination, large portions of the seen

Figure 11 row 2 displays a scene of a girl moving a toysuch as the sky and the ground are textureless, making it
car on a table. The surface of the car is specular, and thdifficult to achieve robust stereo matching. Since our sys-
background and car have similar colors, making it challengtem allows us to dynamically change the camera baseline,
ing to prevent the disparity of the background from mergingwe use its real-time feedback to tune the parameters and in-
with the disparity of the car. Moreover, the motion of the carcrease the camera baseline to obtain a satisfactory digpari
is towards the camera, causing the body of the car to hawaap, as shown in the supplementary video. The use of large
several different disparities. This makes labeling eagkIpi baseline may lead to holes near the occlusion boundaries on
using stereo correspondence methods even more difficufull-resolution images. These holes are, however, less sig
Nevertheless, our algorithm preserves the edges of the caificant in low-resolution stereo pairs and our upsampling
when it is in focus and correctly blurs portions of the scenescheme is able to borrow information from the color image
outside of the focal plane. Our system performs well indoorso fill in the holes. The extracted frames show that we are
because the background distance is often limited, thexeforable to correctly change the focus between the moving tar-
allowing one baseline to produce accurate disparity labelgets in both foreground and background.
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6 Conclusion and Future Work

We have presented an affordable stereo solution for produc®
ing high quality live DoF effects. Our system shows promis-
ing results on indoor and outdoor scenes although it stil ha 6.
several limitations. First, 15 fps is a low frame rate and our
resolution of 640« 480 precludes our system from immedi-
ately being used in high quality HD video applications. Us- g4
ing multiple GPUs may address this problem as they allow
greater exploitation of inherent parallelism in our congput
tional pipeline. Second, although the high quality sensdr a
lens system on our camera pair significantly reduces image "
noise and optical distortions, this comes with a highereric

7.

While less expensive than existing commercial movie cami0.

eras, our system is still twice the cost of most base level
video cameras. Integrating existing real-time techniqoes ;4
correct optical distortions and sensor noise into our jmgel
would make it feasible to use lower cost webcams instead dif2.
the firewire Flea cameras. 13.

Our future efforts include adapting our system to func-
tional applications such as privacy protected surveitanc 14.
We plan to demonstrate the usefulness of our system in ur-
ban spaces to limit the focal plane to public areas, e.g., thf5
sidewalks, while blurring more distant private areas like t
interior of homes. Current urban surveillance networks are
augmented with real-time recognition algorithms to detect
illegal activity. When illegal activity is detected, oursgm 16.
could provide more information to law enforcement by re-
moving the DoF effect using the stored disparity map stream7.
for subsequent scene reconstruction. We can also leverage
future gains in ubiquitous computing to produce a truly mo-
bile platform which utilizes, for example, two camera phene ;o
for producing DSLR quality imagery.

20.
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