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Abstract. Motion blurs confound many computer vision problems. The
fluttered shutter (FS) camera [1] tackles the motion deblurring problem
by emulating invertible broadband blur kernels. However, existing FS
methods assume known constant velocity motions, e.g., via user specifi-
cations. In this paper, we extend the FS technique to general 1D motions
and develop an automatic motion-from-blur framework by analyzing the
image statistics under the FS.

We first introduce a fluttered-shutter point-spread-function (FS-PSF) to
uniformly model the blur kernel under general motions. We show that
many commonly used motions have closed-form FS-PSFs. To recover the
FS-PSF from the blurred image, we present a new method by analyzing
image power spectrum statistics. We show that the Modulation Trans-
fer Function of the 1D FS-PSF is statistically correlated to the blurred
image power spectrum along the motion direction. We then recover the
FS-PSF by finding the motion parameters that maximize the correla-
tion. We demonstrate our techniques on a variety of motions including
constant velocity, constant acceleration, and harmonic rotation. Experi-
mental results show that our method can automatically and accurately
recover the motion from the blurs captured under the fluttered shutter.

1 Introduction

Restoring motion blurred images is a challenging task as it relies on both accurate
kernel estimation and robust deconvolution. Most existing approaches assume
the blurs are caused by constant velocity motion and model the kernel as a box
filter. Tremendous efforts have been focused on designing robust deconvolution
methods, from the earlier approaches based on regularization [2] to the latest
ones using image statistics [3] and edge priors [4]. However, since the box filter
destroys high-frequency features that are difficult to recover post-capture, results
using these deconvolution methods may still contain strong artifacts.

Several computational photography methods have recently been proposed to
change the frequency profile of the blur kernel. The fluttered shutter (FS) camera
developed by Raskar et al. [1] opens and closes the shutter during the exposure
process according to a pre-determined sequence. The pseudo-random sequence
creates a broad-band filter that preserves high frequency details and is robust
to deconvolve. However, most existing fluttered shutter methods assume known
constant velocity motions and rely on either user inputs [1] or alpha matting [5]
to find the blur extent.
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Fig. 1. Motion estimation and deblurring of harmonic rotation using our approach.

This paper addresses two fundamental problems when using the fluttered
shutter: 1) how to apply the FS to handle a broader class of motions and 2) how
to automatically recover the motion from the blurred image. For the first, we
introduce a new fluttered-shutter point-spread-function (FS-PSF). FS-PSF uni-
formly models the blur kernel of arbitrary motions by computing how long each
pixel gets exposed to the moving scene point throughout the shutter sequence.
We show that many common motions such as constant velocity, acceleration,
and harmonic rotation have closed-form FS-PSFs.

For the second, we present a new motion-from-blur method based on im-
age power spectrum statistics. Schaaf and Hateren [6] have shown that circular
power spectrum statistics of blur-free images follow the 1/ω-exponent model.
We extend their analysis to model the linear power spectrum of motion blurred
images captured under the FS. We show that the Modulation Transfer Function
(MTF) of the 1D FS-PSF should be strongly correlated to the linear statistics of
the blurred image along the motion direction. We then develop a matching algo-
rithm using a sign-of-derivative metric to find the motion parameters that yield
the strongest correlation. We demonstrate our techniques on real images of var-
ious motion types. We show that our method can automatically and accurately
recover the motion parameters from blurs under the fluttered shutter. Further-
more, the recovered motion can be used to modify the initial shutter sequence
with improved invertibility in cases that have not previously been addressed in
literature on coded exposure. Our specific contributions are:
1. A new motion-from-blur framework analyzing Fourier image statistics.
2. A closed-form formulation of the fluttered shutter point-spread-function (FS-

PSF) to model general 1D motion blurs under the FS.
3. A new image statistics analysis that correlates the MTF of the FS-PSF with

linear power spectrum statistics of the blurred image.
4. A sign-of-derivative matching algorithm to find the motion parameters that

maximize the correlation. Our method also leads to the new design of the
motion-aware fluttered shutters.

2 Related Work
Existing algorithms related to motion blur have focused on three main aspects:
blur kernel (PSF) estimation, image deconvolution and, most recently, image
acquisition.

PSF Estimation: PSF estimation from a single image is known to be ill-
posed. Existing methods make it tractable in a number of ways. Yuan et al.
[7], for example, use a blurred/noisy image pair of the same scene. Other ap-
proaches employ regularization, such as the classical Wiener filter [2]. Still other
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approaches tackle the PSF estimation problem by constraining the space of po-
tential PSFs. Assuming that blur arises from a traditional shutter with linear,
constant-velocity motion constrains the potential PSFs to box filters. The cep-
strum methods [8–10] have been proposed to characterize the motion by the
number and position of zeros in the image power spectrum. However, these
methods cannot be applied to fluttered shutter images that are acquired specif-
ically to avoid such zeros. Recently, Dai and Wu [11] treat motion blurs as an
alpha matte for estimating the PSF. Agrawal and Xu [5] apply a similar ap-
proach on the fluttered shutter. The implicit assumption in alpha-matte-based
PSF estimation is the existence of high-contrast edges in the latent sharp image.
Since the alpha matte only provides the blur extent, such methods cannot dis-
tinguish between the infinite number of velocity/acceleration combinations that
might produce that extent.

Image Deconvolution: Numerous methods in the category of blind decon-
volution [12] have been presented to mitigate the effects of motion or optical
blur in images. Most motion deconvolution methods are based on the assump-
tion that the object is moving along a straight line with constant velocity, in
which case the PSF is a 1D box filter. Levin [4] examines the consequences of
this type of blur on image statistics in order to perform blind deconvolution on
blurred regions. It is also well understood that the magnitude of the Fourier
transform of such a PSF has many zero points, where the frequency cannot be
fully recovered. These missing frequencies lead to artifacts when using standard
deconvolution. Though the scene’s content at these spatial frequencies is irrecov-
erable, outside information in the form of gradient or edge priors [13–15, 3, 16]
can be used to produce visually pleasing images.

Acquisition: Sharp image acquisition of fast-moving can also be achieved
using short exposure duration with high-powered flashes, which is impractical
in most settings. Many modern digital cameras have adaptive optical elements
controlled by inertial sensors to reduce the effects of moderate camera motion
due to hand shakes. Using video with varying exposure durations, Agrawal et
al. [17] capture multiple images with partial coverage of the spatial frequency
spectrum, which are combined to produce a single sharp image with coverage of
all spatial frequencies. Hybrid cameras [18–20] use additional images/video to
obviate or simplify the kernel estimation step.

Our work is motivated by the Flutter Shutter (FS) method by Raskar et al.
[1], in which a single image is acquired by randomly opening and closing the cam-
era’s shutter during image capture. For constant velocity motion, the resulting
blur kernel is invertible and standard image decovolution can be directly used
for deblurring. However, existing FS techniques assume known motion extent,
e.g., via user specifications. In contrast, we set out to actively recover the motion
from the blur. Our work is also related to Depth-from-Defocus (DfD) methods
based on the coded apertures [21]. Although both DfD and motion estimation
can be formulated as kernel estimation problems, motion blur kernels are usu-
ally complex yet spatially-invariant whereas defocus blur kernels are simple but
spatially variant. As a result, motion estimation methods can uniformly treat
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groups of pixels, e.g., via image statistics [3] while DfD techniques rely on other
types of priors such as smoothness or edges [22, 23]. In this paper we analyze
image statistics under the fluttered shutter for motion estimation.

3 Fluttered Shutter Point Spread Function (FS-PSF)

We start with defining the point-spread-function under the fluttered shutter that
we call FS-PSF. We represent the shutter’s fluttering pattern as a sequence of
chops with 1/0 values denoting the open/closed shutter states. We set every
chop to have the same period wchop and will use wchop as the time unit t in the
following analysis. Let S(t) denote the flutter sequence, we have:

S(t) =
{

0 shutter closed
1 shutter open , t = 1, 2, 3, · · · ,Ms (1)

where t represents time, Ms is the number of chops in the sequence, and Es =
wchop

∑Ms

t=1 S(t) is the total exposure time.
The normalized FS-PSF p(x) describes how much each pixel x gets exposed

to a moving scene point Q. Therefore, it is a function of both the shutter se-
quence S(t) and the motion of Q. To simplify our analysis, we adopt the same
assumption in [1] that the moving object is frontal-planar and the FS-PSF is
spatially-invariant. We measure the motion parameters such as displacement,
velocity, and acceleration in unit of pixels, e.g., velocity as pixel/chop.

Recall that pixel x gets exposed to Q when Q’s image passes through x. The
exposure duration w(x) is inverse proportional to Q’s velocity ν(x) as:

w(x) =
1

ν(x)
(2)

Notice that, for general motions, it is natural to describe the velocity and
displacement in terms of t. Thus, we can rewrite w(x) = 1

ν(t(x)) , where t(x) is
the inverse of the displacement function x(t). In this paper, we assume that x(t)
is monotonic throughout the shutter sequence, i.e., there is no back and forth
motion, so that x(t) is invertible.

Finally, we combine the shutter sequence and the exposure w(x) to compute
the un-normalized FS-PSF p0(x)3 as:

p0(x) = S(t(x))w(t(x)) =
S(t(x))
ν(t(x))

(3)

Eq. (3) indicates that the FS-PSF can be viewed as an envelope of w(x) sampled
by the shutter pattern S(t) as shown in Fig. 2. To derive the FS-PSF for arbitrary
motions, we simply need to derive t(x).

3.1 Constant Velocity
For constant velocity motion at νcpixels/chop, we assume the first exposed pixel
is the 0-th pixel, and we have x(t) = νc · t and t(x) = x/νc. The FS-PSF is thus:

p0(x) =
S(t(x))

νc
=

S( x
νc

)
νc

, x = 1, · · · , νcMs (4)

3 p0(x) is later be normalized to FS-PSF p(x)
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Since the last exposed pixel coordinate has x(Ms) = νcMs, we can compute
the normalized FS-PSF as:

p(x) =
p0(x)∑νcMs

x=1 p0(x)
=

S( x
νc

)
νcEs

, x = 1, · · · , νcMs (5)

Eq. (5) indicates that varying the velocity νc will result in spatial scaling in
the PSF p(x), while the envelope of p(x) remains as a rectangle. An example is
shown in Fig. 2(left); the discretization of x in pixels may result in non-integer
values. Our FS-PSF approximates non-integer pixels as the closest integer pixels
with partial exposure intensity.

Recall that existing methods [1, 5] directly treat the shutter sequence as the
PSF, i.e., p(x) = S(x). It is a special case of Eq. (4) where νc = 1pixel/chop,
and was achieved by manually re-sampling the captured image.

3.2 Constant Acceleration
Let νs and νe denote the velocity of Q at the start and end of the shutter
sequence. The acceleration a can be computed as: a = νe−νs

Ms
. The velocity ν(t)

and displacement x(t) are:

ν(t) = νs + a · t, x(t) = νs · t +
a

2
· t2 (6)

We can invert Eq. (6) to compute t(x) as:

t(x) =
−νs +

√
ν2

s + 2a · x
a

(7)

Finally, we can derive its FS-PSF using Eq. (3):

p0(x) =
S(t(x))
ν(t(x))

=
S(−νs+

√
ν2

s+2a·x
a )√

ν2
s + 2a · x

(8)

The envelope of the constant acceleration FS-PSFs can be approximated as
a trapezoid, as shown in Fig. 2 (middle); changing the starting velocity or the
acceleration varies the slope and the shape of the trapezoid. We use νs and a as
the parameters for constant acceleration motion.

3.3 Linear Harmonic Motion
Linear harmonic motion is a periodic motion, where an object oscillates about
an equilibrium position in a sinusoidal pattern, such as the commonly studied
spring-mass system and the pendulum (recall Fig. 1).

We parameterize the linear harmonic motion by the amplitude A, the angular
speed Ω, and the initial phase Φ. We first compute x and ν as functions of t:

x(t) = A sin(Ωt + Φ), ν(t) = AΩ cos(Ωt + Φ) (9)
we solve t as an inverse function of x from Eq. (9):

t(x) =
arcsin( x

A − Φ)
Ω

(10)

Finally, we re-write Eq. (3) and compute the corresponding FS-PSF:

p0(x) =
S(t(x))
ν(t(x))

=
S( arcsin( x

A−Φ)

Ω )

AΩ cos(Ω · arcsin( x
A−Φ)

Ω + Φ)
(11)

Fig. 2(right) illustrates harmonic motion with A = 30, Φ = π/2, Ω = π/30.
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Fig. 2. FS-PSFs of common motions: constant velocity (left), constant acceleration
(middle), and harmonic motion (right). Top row shows the time-velocity function sam-
pled by the shutter (in red). Bottom row shows the corresponding FS-PSF.

4 Recovering Motion PSFs
We have shown many commonly observed motions have closed-form PSFs. Our
goal is to recover the FS-PSF by analyzing blurred images. Recall that the
process of motion blur can be modeled as standard convolution:

i(x, y) = j ⊗ p(x, y) + n(x, y) (12)
where⊗ is the convolution operator, j is the latent sharp image, i is the degraded
image, p is the blur kernel, and n is noise.

If we ignore n, we can model the amplitude spectrum of Eq. (12) as:
|I| = |JP | = |J ||P | (13)

where i/I, j/J , and p/P are Fourier pairs, and | · | is the modulus operator. |P |
is also called the Modulation Transfer Function for 1D PSFs.

4.1 Power Spectrum Statistics
Our FS-PSF estimation algorithm is based on power spectrum statistics in nat-
ural images. van der Schaaf and van Hateren [6] have shown that, for a natural
image j without motion blur, its circular power spectrum statistics follows the
1/ω-exponent model: if we parameterize |J | in polar coordinates (ω, φ) where ω
is the radius (absolute frequency) and φ is the angle, we can average |J | over φ
for every ω and the resulting circular averaged power spectrum circω(|J |) ≈ C

ωm ,
where m and C are constants. Statistically, if we assume every frequency is an in-
dependent and identically distributed random variable, circular statistics reveals
that the expected value of |J(u, v)| is:

E[|J(u, v)|] =
C

(u2 + v2)m/2
(14)

Fig. 3(a) shows example traces of the power spectra of five natural images.
Our goal is to use power spectrum statistics to recover the FS-PSF from the

blurred image i. In this paper, we assume the motion type (constant velocity,
acceleration, etc.) is known and we focus on recovering its corresponding motion
parameters α. Given an candidate α, we can compute the closed-form FS-PSF p
as shown in Sec. 3 and calculate its MTF |P |. The latent image power spectrum
|J | can then be computed as |I|/|P | from Eq. (13). If α is the correct motion
estimate, J should be motion blur free and its circular averaged power spec-
trum circω(|J |) should follow C

ωm distribution. A naive approach for testing if
α is a good motion estimation, then, would be to check if circω(|I|/|P |) has a
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Fig. 3. Power Spectrum Statistics on Five Randomly Selected Images from the Berkeley
Segmentation Database [24]. (a) The circular power spectrum vs. the spatial frequency
ω in a log-log scale. The red lines show the fits of the 1/ω-exponent model. The scaling
of the vertical axis belongs to the top trace. (b) The linear statistics along v vs. u in
a log-log scale. The red curves show our estimated linear statistics from the circular
statistics. For clarity, traces in both plots are shifted -1, -2, -3, and -4 log-units.

C
ωm distribution. However, since circω(|J |) only represents the statistics of |J |,
incorrectly estimated motion parameters may still produce such distributions.
Therefore, we set out to match the statistics between |P | and |I| instead.

4.2 Linear Power Spectrum Statistics
We first replace circular power spectrum statistics with linear statistics. Specif-
ically, we project the 2D power spectrum onto a line l that corresponds to the
motion direction in the spectral domain. We rotate the Fourier plane so that l
is aligned with the u axis and apply the projection by integrating over v. This
process can be alternatively viewed as applying a Radon Transform [25] along
the v direction. In the discrete case, we can compute the linear averaged power
spectrum of an image |J | as:

Ru[|J |] =
1
V

V∑
v=0

|J(u, v)| (15)

where V is the v-dimension resolution. Ru[|J |] represents the horizontal power
spectrum statistics and can be approximated using Eq. (14) as:

Ru[|J |] ≈ E[
1
V

V∑
v=0

|J(u, v)|] =
1
V

V∑
v=0

C

(u2 + v2)m/2
(16)

Fig. 3(b) illustrates that our Ru[·] estimation is accurate and robust.
We can further apply the Ru operator to both sides of Eq. (13):

Ru[|I|] =
V∑

v=0

|J(u, v)||P (u)| = |P (u)| ·Ru[|J |] (17)

Eq. (17) allows us to separate Ru[|J |] and |P |. We can further take the log
of Eq. (17) as:

log(Ru[|I|]) = log(|P |) + log(Ru[|J |]) (18)

4.3 Motion Estimation
Fig. 4 illustrates our motion estimation algorithm. We first determine the motion
direction and align it with the u axis. For every candidate motion parameter α,
we compute its FS-PSF pα and MTF |Pα|, and use it to estimate the latent
image power spectrum |Jα| = |I|/|Pα|. We then compute the linear statistics
Ru[|Jα|], and Ru[|I|]. Finally, we compute the match score µ between log(|Pα|)
and log(Ru[|I|]) − log(Ru[|Jα|]). The optimal motion parameter α corresponds
to the one that maximizes µ.



8 Yuanyuan Ding, Scott McCloskey, and Jingyi Yu

Fig. 4. Steps of Our Power-Spectrum-Based Motion Estimation Algorithm

Estimating the Motion Direction. We adopt a similar approach to [26]
that finds the direction with most muted high frequencies. This assumes that the
latent sharp image is not highly anisotropic, i.e., the power spectrum distribution
along all directions have similar characteristics (variance, mean values). Since
1D motion blur attenuates the middle- and high-frequency information in the
direction of motion, it amounts to a detection of a direction in which they are
most muted. We do this by inspecting the Radon-power spectrum of the blurred
image in all directions and choosing the one with the maximal variance.

Computing Linear Statistics of |Jα|. A crucial step in our motion esti-
mation algorithm is to derive the linear statistics of |Jα| = |I|/|Pα| from the
circular statistics. Since we assume Jα is motion blur free, its circular statis-
tics should follow 1/ω-exponent distribution. To estimate C and m, we compute
the discrete circular averaged power spectrum and apply line fitting between
log(circω[|Jα|]) and log(ω). We then approximate the linear statistics Ru[|Jα|]
using Eq. (16).

Matching Log-Linear Statistics. Recall that our ultimate goal is to match
f1=log(|Pα|) and f2=log(Ru[|I|])− log(Ru[|Jα|]) under some metric µ. A native
µ is to measure the squared difference at sampled points on f1 and f2. Since the
power spectrums of images generally have much smaller values in high frequency,
directly computing the correlation between the estimate f1 and f2 results in
unequal contributions from different frequencies.

We employ a metric based on the signs of the function derivatives to equally
treat all frequencies. Specifically, we use a derivative sign function Γ (·):

Γ (χ(u)) =
{

1, dχ
du ≥ 0

−1, dχ
du < 0

(19)

where χ is a 1D function on u.
Finally, we sample f1 and f2 at discrete points u1, u2, · · ·, un, and compute:

µ(f1, f2) =
n∑

i=1

Γ
(
f1(ui)

)
Γ

(
f2(ui)

)
(20)

4.4 Motion-Aware Fluttered Shutter

Although not the focus of the paper, we briefly discuss how to use our techniques
to develop motion-aware flutter shutters. The standard flutter shutter method
has been focused on deblurring a single image. For videos, the object’s motion
may vary across the frames. Therefore, we aim to use the recovered motion to
further update the initial shutter sequence to better match the motions.

Our strategy is to first determine the shutter sequence in the spatial domain
and then map the sequence to the temporal domain. Recall that we have shown
in Sec. 3 that the FS-PSF can be viewed as a motion envelope sampled by the
shutter sequence: the envelope is a function of recovered motion parameters α



Analysis of Motion Blur With a Flutter Shutter Camera 9

Fig. 5. Motion Estimation and Deblurring Results on an Iris Image and a Bar Code
Image. (a) shows our motion stage and the fluttered shutter camera. Column 2: The
ground truth blur-free images. Column 3: Blurred images caused by constant veloc-
ity motion under the FS. Column 4: The matching metric vs. the motion parameter
(velocity). Column 5: The deblurred results using our recovered motion parameter.

and the sampling is determined by the shutter sequence. We can directly model
the FS-PSFs as a dot product of the envelope w(x) and a binary sequence b(x)
in the spatial domain and apply the same search scheme in [1] and [5] to locate
an optimal b(x) so that w(x)b(x) is ”most” invertible, i.e., the one that has
the maximal minimum magnitude in its MTF. Finally, we determine the flutter
pattern s(t) from b(x) by using the motion model:

s(t) = s(t(x)) = b(x(t)) (21)
Fig. 8 compares the deblur results using the initial const velocity optimal se-

quence and using our motion aware sequence.

5 Results
We have applied our technique to all of the publicly available flutter shutter im-
ages [1], and find that our method produces estimates that are within 1 pixel of
the ground truth values, giving high-quality reconstructions. In order to test the
broader types of blur (acceleration, harmonic motion) handled by our method,
we have acquired additional test images using a Point Grey Flea2 camera trig-
gered via the serial port of the controlling computer. The camera supports an
external shutter mode that accumulates exposure over several chops, after which
a single readout produces the flutter shutter image. To deblur the image from
our recovered FS-PSF, we use the linear system solution [1] for constant velocity
motions and the Gaussian-derivative-prior method [21] for constant acceleration
and harmonic rotation motions.

5.1 Constant Velocity
We first validate our algorithm on constant velocity motion. The only parameter
here is the velocity. We captured the images from a fixed camera observing a
motion stage to which textured objects are attached as shown in Fig. 5(a). Our
motion stage can simulate different velocity motions via voltage controls. To
measure the ground truth velocity, we use a step edge calibration target and
measure its blurred width in an image with a known exposure time. We choose
the shutter sequence as in [1] whose MTF has the maximum min magnitude and
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Fig. 6. FS-PSF Estimation and Deblurring Results on Constant Accelerations. A toy
car sliding down a slanted track at 55◦. The camera is rotated so that the motion
appears horizontal. For clarity, a textured cardboard was attached to the car. (a): The
motion blurred image under the fluttered shutter. (c) and (d) show the functions t(x)
and the corresponding PSFs using constant velocity assumption and our recovered
constant acceleration motion. (e) The deblurred result using the FS-PSF of constant
velocity (vc=1.51pixels/chop). (f) The deblurred result using our algorithm’s FS-PSF
estimation for constant acceleration (vs=1.16pixel/chop, ve=1.85pixel/chop). (b), (g),
and (h) are close-up views for (a), (e), and (f).

has a chop duration of vc = 1pixel/chop. With this setup, we obtain the ground
truth FS-PSF using Eq. (5).

Fig. 5 shows two examples acquired using this setup, an iris image (b) with
little texture and a bar code image (f) with repetitive texture. The iris and 2D
barcode targets move from left to right with a constant velocity, giving the flutter
shutter images (c) and (g). In both cases the motion is axis-aligned horizontal.
Our estimated motion direction is within 1◦ degree of this ground truth. The
plots (d) and (h) show the matching metric µ computed over a range of potential
PSF sizes (proportional to velocities in this case), which have pronounced peaks
exactly at the ground truth values (35 pixels for the iris image and 42 pixels for
the barcode image). The resulting FS-PSF estimates are then used to deblur (c)
and (g). Our deblurred results (e) and (i) contain sufficient detail to perform
recognition on the de-blurred images. The iris template extracted from our de-
blurred image was successfully matched to a separate image of the same eye,
and the barcode image can be decoded to extract its payload. Neither the iris
recognition nor the barcode decoding were successful on Lucy-Richardson [27]
de-blurred versions of traditional shutter images captured with the same setup.

5.2 Constant Acceleration
For constant acceleration, the motion parameters α are the starting velocity and
acceleration. We capture accelerated motion images using a toy car on a slanted
track, using a dead drop for which gravity provides the only acceleration. Because
of the unknown timing between the release of the car and the image capture,
we are unable to determine the ground truth FS-PSF for these images. Instead,
we validate our motion estimation by the quality of the deblurred results. The
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Fig. 7. FS-PSF Estimation and Deblurring Results on a Harmonic Rotational Tea Bag
(g). (a) and (b): The captured blur image under the FS. (d): Warped (b) under polar
coordinates. (e) and (h): Our motion deblurred result under the polar and the cartesian
coordinates. (f): Our recovered FS-PSF. (c) and (i): Close-up views for (b) and (h).

shutter sequence used in these experiments is computed under the constant
velocity assumption and does not account for acceleration. Because the velocity
and acceleration are unknown a priori, these images are generated with what is
essentially a random flutter shutter sequence.

Fig. 6 (a) shows the image captured as the toy train undergoes accelerated
motion. Though the track is slanted at 55◦, the camera is rotated so that the
motion appears nearly horizontal. We first apply our motion direction estimation
algorithm, which produces an estimate of 1◦. Next, we apply our power spectrum
statistics approach to determine the acceleration motion parameter, which gives
t(x) and the FS-PSF shown in (d). The deblurred result is shown in (f), and
a close-up in (h). Given the severe blur in (a) and the fact that the fluttering
sequence is not optimal under accelerated motion, the amount of detail present
in the close-up is significant. Note that reconstruction artifacts in (f) are due
to the stationary background’s intensity interacting with the moving foreground
object. We also present the deblurred result assuming a constant velocity motion
model. Our algorithm first estimates the motion velocity and plots the t(x) and
PSF in (c). As shown in (e) and (g), using incorrect motion model, the deblurred
images contain severe artifacts.

5.3 Harmonic Rotation
Finally, we experiment our approach on planar harmonic rotation. The harmonic
rotation consists of 3 parameters, i.e., A, Ω, and Φ. As shown in Fig. 7(a), we em-
ulate harmonic rotation by hanging a heavy rigid object below a fixed stick using
two approximately rigid, weightless cords. These two cords are connected to the
same point. By swinging the object back and forth freely within a plane, we syn-
thesize a periodic harmonic rotation. Notice that the rotation is 2-dimensional,
with spatially varying blur kernels for different pixels (Fig. 7(b)).
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Fig. 8. Motion-aware Fluttered Shutter. (a) is the PSF and the MTF under con-
stant velocity. (c) is the PSF/MTF under acceleration motion (vs=0.8pixels/chop,
ve=1.8pixels/chop) using the same sequence as in (a). (d) is the PSF/MTF using our
motion-aware sequence. (e) and (f) are synthetically blurred images of (b) using accel-
eration PSFs in (c) and (d). (g) and (h) are the corresponding deblurred images, (i)
and (j) show the close-up views.

In order to simplify the analysis, we transform the harmonic rotation into a
linear harmonic motion. Specifically, we track feature points and estimate the
rotation center by solving a least squares problem [16]. We then warp the image
along the radial directions to form a spatially invariant linear harmonic motion
blur (d). Our algorithm recovers the harmonic motion parameters (f) and then
deblurs the image (d) and obtain (e). Finally, we warp the image back to the
original cartesian coordinate system (h).

5.4 Motion Aware Shutter Sequence
We pick a fluttered shutter sequence originally designed optimal for constant
velocity motion (v=1.0pixel/chop) as the initial shutter sequence. We then use
this sequence to capture an accelerated motion with vs=0.8 pixels/chop and
ve=1.8pixels/chop. The resulting FS-PSF is shown in Fig. 8(c). Notice that it
has small values at several frequencies. We synthetically blur a sharp image (b)
using the FS-PSF with additive Gaussian white noise of σ=0.01. We then deblur
it using our motion estimation algorithm, with constant acceleration. Although
our method recovers highly accurate motion parameters (vs=0.790, ve=1.805),
the resulting deblurred results contain strong ringing artifacts.

Using the recovered motion parameter, we apply the random search scheme
as in [1] to find the optimal flutter shutter sequence. The new FS-PSF is shown
in Fig. 8(d). Compared with the old FS-PSF, it maintains large values at all
frequencies. We use the new FS-PSF to blur the sharp image and also add
Gaussian white noise σ=0.01. Finally, we apply our power spectrum statistics
method to recover the motion parameter and obtain a new deblurred image as
shown in (h). (i) and (j) show the close-up views of the deblurred results under
the old and new FS-PSF. The motion-aware FS-PSF yields much less artifacts.

6 Conclusion and Limitations
We have presented a new fluttered-shutter-based motion estimation and deblur-
ring framework. Our method adopts the fluttered-shutter point-spread-function
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(FS-PSF) model to uniformly describe blur kernels under general motions. We
have developed an automatic motion-from-blur technique that recovers the FS-
PSF by analyzing image power spectrum statistics. We have introduced a new
linear statistics model that can be directly estimated from circular power spec-
trum statistics. We have shown that the MTF of 1D FS-PSF should be statis-
tically correlated to the linear statistics of the blurred image’s power spectrum
along the motion directions. To find the optimal FS-PSF, our method searches
the space of motion parameters to find the one that yields the maximum corre-
lation.

The use of fluttered shutters is crucial in our motion-from-blur algorithm.
Recall that the first step in our linear statistics estimation is to compute the
latent image power spectrum |J | = |I|/|P |. The implicit assumption there is
that |P | does not contain zeros, the most important property of the fluttered
shutter. For conventional shutters where P is a sinc function and has many zeros,
the resulting |J | will contain points with large values and robustly fitting 1/ω-
exponent distribution to circular power spectrum statistics is difficult. Thus, our
technique is not directly applicable to the box filters.

Another limitation of our framework is that it is restricted to 1D motions.
1D motions allows us to efficiently separate the FS-PSF from linear statistics of
the latent image (Eq. (17)). Intuitively, our technique may be directly applied
to 2D motions. For example, once we compute C and m of the 1/ω-exponent
model, we can approximate |J(u, v)| ≈ C/(u2+v2)m/2 and directly match the 2D
function |I|/|J | with |P |. However, since the 1/ω-exponent model is a statistical
model, the actual |J | values may significantly deviate from their expected values.
Therefore, matching 2D |I|/|J | with |P | is not reliable. A possible solution for
future work is to approximate the 2D FS-PSF as combinations of 1D FS-PSFs
and then reapply our linear statistics method to fit along their corresponding
directions. Another important future direction is to use our motion-aware flutter
shutter for video deblurring. The challenge there is to determine the optimal
shutter sequence from the estimated motions in real-time (e.g., 30fps). Recall
that majority of our computations lie in the spectral space and computing image
statistics is similar to texture filtering. Therefore, we plan to re-implement our
algorithm on the GPU for real-time motion estimation and shutter selection.
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