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Abstract

We present an interactive GPU-based algorithm for accurately rendering high-quality, dynamic glossy reflection
effects from both HDR environment maps and local scene objects. Our method uses hardware rasterization to pro-
duce primary pixels, and GPU-based BRDF importance sampling [CK07] to quickly generate reflected rays. We
utilize a fast GPU ray tracer proposed by Carr et al. [CHCH06] to compute reflection hits. Our main contribution
is an adaptive level-of-detail (LOD) control algorithm that greatly improves ray tracing performance during re-
flection shading. Specifically, we use the solid angle represented by each reflected ray to adaptively pick the level
of termination in the BVH traversal step during ray tracing. This leads to 2 ∼ 3x speedup over an unmodified
implementation of [CHCH06]. Based on the same solid angle measure, we derive a texture filtering formula to re-
duce reflection aliasing artifacts, taking advantage of hardware MIP mapping. This extends the filtering algorithm
presented in [CK07] from environment mapping to local scene reflection. Using our algorithm, we demonstrate
interactive rendering rates for several scenes featuring dynamic lighting and material changes, spatially varying
BRDF parameters, and rigid-body object movement.

1. Introduction

Accurate simulation of complex surface reflections plays a
central role in creating photorealistic images. In computer
graphics, reflection of lights from surfaces is typically mod-
eled by the Bidirectional Reflectance Distribution Function
(BRDF) – a 4D function that uniquely captures the appear-
ance properties of each different material. Traditionally in
real-time global illumination systems, diffuse or ideal spec-
ular (mirror) materials are assumed because these are two
special cases of the BRDF that simplify the computation of
reflections. General glossy BRDFs are much more expensive
to simulate, as they require integrating many reflected rays
over the hemisphere of incoming light. The importance of
each reflected ray is determined by the BRDF, and is further
dependent on the viewing angle, making it very difficult to
cache and reuse previously computed samples.

Assuming distant lighting environment, researchers have
studied environment mapping techniques that render accu-
rate glossy reflections in real-time. These include prefiltered
environment maps [CON99,HS99,KVHS00], spherical har-

monics or wavelet basis projection [RH02, WNLH06], and
GPU-based BRDF importance sampling [CK07]. The fun-
damental limitation of environment mapping is that global
illumination effects such as cast-shadows and indirect light-
ing are ignored. Recently, Precomputed Radiance Transfer
(PRT) [SKS02, IDYN07, SZC∗07, AUW07] has been shown
to enable real-time lighting effects that include local scene
reflection, global and self-shadowing, and dynamic BRDFs.
These methods typically require fixing scene models so that
they can make use of precomputed data to amortize shading
costs on the fly.

Our goal in this paper is to design a fast GPU-based al-
gorithm for simulating dynamic glossy reflection effects in
real-time. To allow for general BRDFs and dynamic scenes,
we make use of a GPU-based ray tracer to shade reflec-
tion rays directly on the fly, without requiring hefty precom-
puted data. Recent progress in GPU-based ray tracing has
made it possible to trace tens of millions of rays in one sec-
ond [PBMH02, HSHH07], and there has been an increasing
interest in utilizing such algorithms for computing distribu-
tion ray tracing effects such as glossy reflections. The major
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challenge with current methods is that they rely on coherent
bundled rays to exploit the GPU’s massive parallel compu-
tation power; however, the initial coherence is likely to be
lost upon glossy reflection, where the rays diverge from each
other as they travel away from the origin.

As our main contributions, we present an algorithm that
combines adaptive LOD control with hardware texture fil-
tering to avoid shooting excessive rays, reducing the over-
all computation cost. We first use hardware rasterization to
produce primary pixels, and GPU-based BRDF importance
sampling [CK07] to generate reflected rays. We then utilize
a fast GPU ray tracer presented by Carr et al. [CHCH06]
to compute reflection hits. During ray tracing, we make use
of the solid angle represented by each reflected ray to adap-
tively pick the level of termination in the BVH traversal hi-
erarchy. This approach in general leads to 2 ∼ 3x speedup
over an unmodified implementation of [CHCH06]. Based
on the same solid angle measure, we also derive a texture
filtering formula to efficiently reduce reflection aliasing ar-
tifacts, taking advantage of standard hardware MIP map-
ping. This method can be seen as an extension of [CK07]
from environment mapping to local scene reflections. Using
our algorithm, we demonstrate several scene models featur-
ing dynamic lighting and material changes, spatially varying
BRDF parameters, and rigid-body object movement.

Currently, our particular ray tracing implementation lim-
its us to models represented by geometry images. It is pos-
sible, however, to extend the work to more general repre-
sentations, which requires providing a reasonable estimate
of the solid angle and an approximate intersection geometry
at each node in the ray tracing hierarchy (acceleration struc-
ture). We would like to explore these options in future work.

2. Related Work

Real-time Glossy Reflections In recent years, image-based
lighting, which represents natural illumination by distant
HDR environment maps [DM97], has been widely used for
generating convincing shading effects. Under the assump-
tion of distant lighting, the expensive cost of computing
glossy reflections can be amortized by prefiltering envi-
ronment maps [CON99, HS99, KVHS00], or using projec-
tion basis such as spherical harmonics or wavelets [RH02,
WNLH06]. These methods require preprocessing of BRDFs
and thus are not suitable for arbitrary BRDFs dynamically
applied in real-time. In addition, they ignore global illumi-
nation effects such as cast-shadows and interreflections.

Recently Colbert et al. [CK07] presented GPU-based
BRDF importance sampling to compute real-time, dynamic
glossy reflections with minimal requirement imposed on the
BRDF. They make use of mipmap filtering to reduce aliasing
artifacts caused by low sample count. Similar to environment
mapping, this method only works for local illumination ef-
fects, ignoring shadows and interreflections. Our approach

Figure 1: A glossy teapot rendered with spatially varying
BRDFs: the intensity of the "PG 08" texture is used to mod-
ulate the specularity of a Phong BRDF. This example runs at
5 fps with 512×512 resolution on NVidia 8800 GTX.

extends their work to global effects by utilizing a fast GPU
ray tracer. We improve the ray tracing performance for re-
flected rays by using adaptive LOD control; in addition, we
extend their mipmap filtering algorithm from distant envi-
ronment maps to textured, local scene objects.

Precomputed Radiance Transfer (PRT) [SKS02, IDYN07,
SZC∗07,AUW07] has been shown to enable real-time realis-
tic lighting effects that include local scene reflections, global
and self-shadowing, and dynamic BRDFs. These methods
rely on a large amount of precomputed data sampled from
fixed scene models, disabling dynamic object movement
or deformation. In general, he precomputation requirement
makes them inflexible at handling arbitrary and per-pixel
shading effects, such as BRDFs with broad frequency scales,
bump mapped normals, and spatially varying BRDF param-
eters. By using real-time ray tracing, our approach permits
great flexibility in handling arbitrary reflections. Further-
more, it eliminates the need for heavy precomputation: we
require only a small amount of precomputed data (i.e. the
BVH structure for ray tracing), which can be quickly up-
dated on the fly to allow for deformable scenes [CHCH06].

Real-time Ray Tracing By carefully exploiting the coher-
ence of rays, real-time ray tracing has been shown possible
on commodity CPUs [WBWS01,RSH05,DHW∗]. Recently,
ray tracing on programmable GPUs has also received signif-
icant attention. Purcell et al. [PBMH02] designed a GPU ray
tracer using a uniform grid acceleration structure. Foley et
al. [FS05] proposed an improved algorithm using kd-tree,
which is later extended by Horn et al. [HSHH07] with sev-
eral major enhancements. Carr et al. [CHCH06] use a bound-
ing volume hierarchy (BVH) and a fixed-order traversal al-
gorithm to create a ray tracer suitable for geometry image
models [GGH02]. This method allows the GPU to efficiently
stream through the BVH nodes without maintaining a stack,
a major challenge in GPU ray tracing. In addition, the struc-
ture of the BVH is simple enough to be updated online, per-
mitting dynamic deformable objects.

It is possible nowadays to trace tens of millions of rays per
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second for primary and shadow rays, thanks to the excellent
coherence of these rays, which can be successfully exploited
by the massive parallel computation power of modern GPUs.
This kind of speed is sufficient for interactive applications
that require only OpenGL style shading. For distribution ray
tracing, however, the coherence of reflected rays is usually
quite poor, as they diverge strongly from each other upon
reflection. In addition, multiple rays must be evaluated to
robustly estimate the integral of lighting with BRDFs. As a
result, the ray tracing performance slows down significantly
when glossy interreflections are enabled.

LODs for Ray Tracing Level-of-details (LODs) has been
widely used for accelerating rendering with large polygon
sets [LWC∗02], especially in rasterization-based graphics.
Its use in ray tracing, on the other hand, is relatively new.
Christensen et al. [CLF∗03] introduced an LOD approach
that combines ray differentials [Ige99] with multiresolution
caching for offline rendering. Their method supports 3 dis-
crete resolution levels. Djeu et al. [DHW∗] presented Razor
– a ray tracing architecture that supports watertight multires-
olution geometry using a continuous interpolation scheme
and a dynamic kd-tree built on-demand. Due to their com-
plexity, these methods are only suitable for CPU implemen-
tation. Yoon et al. [YLM06] introduced R-LOD – a simple
and fast LOD representation that is designed to dramatically
simplify massive models and improve ray tracing speed. Our
approach is fundamentally similar to theirs. The difference
is that we make use of the existing hierarchy of geometry
image models [GGH02, SWG∗03] to simplify the represen-
tation of LOD, making it suitable for GPU computing. This
idea was previously explore by [HR06] and [JJ05] in ras-
terization based rendering. In addition, we focus on glossy
reflections, and combine LOD with fast, hardware texture
filtering to further reduce computation.

3. Algorithms and Implementation

3.1. Overview and Assumptions

According to the rendering equation [Kaj86], the reflected
radiance from viewing direction ωo at a surface point x due
to incident lighting L is computed by:

B(x,ωo) =
∫

Ω

L(x,ω) fr(ωi,ωo) cosθdωi (1)

where ωi is the incident direction, θ is the incident angle, and
fr is the BRDF. The incident lighting includes illumination
from both distant and near-field sources in the scene. For
near-field sources, we can rewrite the equation by integrating
over the surface area of unoccluded source patches:

B(x,ωo) =
∫

A
L(xi) fr(xi→ x,ωo)

cosθi cosθo

|xi− x|2
dA(xi) (2)

where xi is a point on the patch being reflected (i.e. an in-
direct light source). When the patch is far away or small
enough, the BRDF and geometry factors can be treated as

Figure 2: An intersection point and the ray’s cross section.

constant within the patch. In that case, the equation can be
approximated by (see Figure 2):

B(x,ωo)≈ L̄(xi) fr(xi→ x,ωo)
cosθi cosθo

|xi− x|2
A(xi) (3)

where xi is a single sample point (in our case, the ray tracing
intersection point), L̄ is the average (blurred) radiance across
the patch, and A is the total area of the patch (in our case, the
cross section area at the point of intersection).

Assumptions We make two assumptions to approximate
the rendering equation and reduce the required computation.
First, we classify a scene model as either a diffuse or a glossy
object, and we compute only one bounce of reflection from
the diffuse objects (plus environment) to the glossy objects.
Transfer paths that start from glossy objects are ignored due
to the difficulty in storing a large amount of view-dependent
information. Second, we assume that the direct lighting on
diffuse objects can be computed quickly at run-time, by us-
ing a shadow mapper or prefiltered environment maps. This
assumption allows us to quickly obtain the diffuse radiance
of the reflected objects without having to trace rays further.

Our rendering algorithm consists of three key compo-
nents: BRDF importance sampling, LOD-based ray tracing,
and image space texture filtering. We have implemented the
entire pipeline on the GPU. In the following we describe
each component in detail.

3.2. BRDF Importance Sampling

To simulate Eq. 2, we use BRDF importance sampling,
where samples are drawn from a normalized distribution
function that is closely correlated to the BRDF itself. Most
commonly used BRDFs have efficient importance sampling
functions; in particular, diffuse and Phong BRDFs have an-
alytic integrals and therefore can be perfectly sampled.

For simplicity, we use the Phong model throughout the
paper. In this case, the importance sampling function p is
simply the normalized Phong BRDF:

p(θ,φ) =
(n+1)

2 ·π · (cosθ)n (4)
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Figure 3: A diagram showing the pipeline of our rendering algorithm.

Here n is the Phong exponent parameter, θ and φ are the
two spherical angles used to define a direction. This direc-
tion is described in the coordinate frame centered around
the principle reflection direction ~R = reflect(ωi,~N). The con-
stant (n+1)

2·π is a normalization factor. Once a sample direction
is chosen, a ray can then be constructed that originates from
x and points toward the sampled direction (θ,φ). Although
we choose the Phong model in our implementation, more
complicated BRDFs can be incorporated as long as their im-
portance sampling functions are known.

Solid Angle Similar to [CK07], we assign each sampled ray
a solid angle representing its angular width:

Ωs =
1

N · p(θ,φ)
(5)

where N is the total number of samples. According to this
definition, the solid angle of a ray is inversely proportional
to the sampling density (importance). This is intuitively cor-
rect, as directions that are sampled more frequently should
represent smaller solid angles. The expected value of Ωs
should be 4π

N , which can be easily verified.

3.3. Adaptive LOD for Ray Tracing

We use a GPU ray tracer described in [CHCH06] to trace
sampled reflection rays into the scene. This implementation
requires the intersecting geometry to be represented by ge-
ometry images [GGH02]. The structure of a geometry image
makes it very easy to build a Bounding Volume Hierarchy
(BVH), which is used as an acceleration structure for ray
tracing. Specifically, each node of the BVH stores an axis-
aligned bounding box of the triangles belonging to that node,
and the entire BVH can be easily built using recursive 4-to-1

reduction, similar to the construction of a Mipmap. A fixed-
order traversal of the BVH is built ahead of time, permitting
the GPU ray tracer to quickly stream through the structure
online without using a stack.

To improve the ray tracing performance, we use a dy-
namic LOD control algorithm. Assume that each reflected
ray has a ’cone’ shape that starts at the ray origin (see Fig-
ure 2): whenever an intersection point is found, the radiance
returned by the ray should be averaged (blurred) across a
large area in object space. As the ray travels farther away, the
cross section of the cone becomes bigger. In this case, pre-
cise intersection tests are no longer necessary, since the per-
ceptual error caused by inaccurate intersection will be low-
pass filtered and become less noticeable. Therefore, we can
use progressively coarser geometry LODs to compute the
intersection. In addition, the average radiance value around
the intersection point can be efficiently estimated by using
hardware texture filtering.

Our LOD-based ray tracing is implemented by using a
simple algorithm to determine the level of termination when
traversing rays through the BVH. As explained before, each
node of the BVH stores a bounding box; as we traverse a
ray through the BVH, we chec the solid angle subtended by
the bounding box of the current node, and compare it with
the solid angle represented by the ray. The solid angle of a
bounding box can be approximated by:

ΩBBox = π
|pmax− pmin|2

4 |(pmax + pmin)/2− x|2
(6)

where pmax and pmin are the two corner points of the bound-
ing box. We compare this value with Ωs – the solid angle
represented by the current ray. When ΩBBox > Ωs, the in-
tersection test has to be more precise, therefore we keep
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traversing the BVH without any change. On the other hand,
if ΩBBox ≤ Ωs, it indicates that the geometry to be inter-
sected with is already smaller than the angular width of the
ray. Since the radiance values within the solid angle have to
be averaged, this suggests that a more precise intersection
is not necessary. In this case, instead of further tracing the
children nodes, we can stop at the current node, treating it
as a leaf node, and using its approximate geometry directly
to compute intersection. If an intersection is found, the av-
erage radiance of the ray will then be retrieved using texture
filtering explained in the next step.

One drawback of this approach is that when the number of
samples is insufficient, the solid angle represented by each
ray will be quite large. In this case, many of the rays will
be intersecting at very coarse levels of the LOD, resulting
in noticeable aliasing artifacts. Overall this problem should
be addressed by increasing the number of samples. However,
we do note that due to importance sampling, rays with higher
importance are associated with smaller solid angles, forcing
them to intersect with finer LOD levels. Therefore this prop-
erty helps to solve the problem partly by providing higher
accuracy for important rays.

We found through experiments that Eq 5 often under-
estimates the solid angle of important rays, resulting in
very small values, especially when the BRDF is very sharp.
Therefore, instead of directly comparing ΩBBox with Ωs, we
add a scaling factor α

2 to Ωs, which provides a more flexible
control on how the adaptive LOD criteria is applied. Hence
in practice, we use the following comparison:

ΩBBox ≤ α
2 ·Ωs (7)

Experiments suggest that an α value between [1,10] pro-
duces good results. Adjusting this parameter provides a
tradeoff between performance and intersection accuracy.
Note that a very small α value is equivalent to disabling the
adaptive LOD control, forcing the ray tracer to perform full
intersection tests. When α = 0, the algorithm falls back to
the original implementation by [CHCH06].

3.4. Texture Filtering

When an intersection is found, we compute its cross sec-
tion in object space, and use this information to guide tex-
ture filtering in order to estimate the average diffuse radiance
within the cross section. In general the intersection cross sec-
tion may have an arbitrary shape, making it very difficult to
perform an accurate estimation. In practice, however, we can
assume the cross section is locally flat, thus can be estimated
from the solid angle of the ray:

A(xi)≈
|xi− x|2 ·Ωs

cosθi
(8)

This is approximately equal to the cross section resulting
from intersecting a ray cone with the tangent plane at the
point xi. See Figure 2 for an illustration.

With the estimated intersection area, we can then evalu-
ate the appropriate Mipmap level for computing the aver-
age radiance. The general idea is that the area A(xi) cov-
ers a certain number of pixels in the texture space, therefore
we would like to pick a Mipmap level that roughly corre-
sponds to that number of pixels. To do so, we assume that
the texture coordinates in the local neighborhood of xi is
uniform. This assumption is reasonable since the geometry
image construction algorithm guarantees uniformity up to a
maximum distortion factor. Next, we estimate the Mipmap
level as:

l =
1
2

log2

(
A(xi)
Apixel

)
=

1
2

(
log2 A(xi)− log2 Apixel

)
(9)

where Apixel is a measure called area per pixel – the ob-
ject space area covered by one pixel. This is used to con-
vert area from object space to texel space. It can be easily
computed from the geometry image by estimating the area
covered the two triangles spanning one pixel size in geom-
etry image space. These values are precomputed and stored
together with the geometry image.

Note that this LOD formula implicitly assumes that the
texture scale is roughly equal in the u and v directions; in
other words, the texture scale is isotropic. If this is not the
case (i.e., the texture is stretched differently along u and
v), we can separate the formula for each direction, and use
anisotropic filtering to achieve more accurate results.

3.5. Implementation Details

Scene Models As mentioned before, we require that dif-
fuse objects in our scenes be represented as geometry im-
ages. Glossy objects do not participate in intersection tests,
therefore do not need to have geometry image representa-
tions. Note that self-reflections are not supported on glossy
objects, although it would be easy to modify the algorithm
so that a glossy object can reflect the diffuse portion of itself.

We generate the BVH and fixed traversal order offline for
each geometry image model, by following the algorithm pre-
sented in [CHCH06]. In addition, we precompute Apixel – the
area per pixel measure for each texel, and store it in the al-
pha channel of the geometry image textures. Figure 3 shows
a diagram of our rendering algorithm.

BVH for Ray Tracing The construction of the BVH for
geometry images is very similar to constructing a Mipmap,
which uses a simple 4-to-1 reduction algorithm in bottom-
up fashion. At each node, the axis-aligned bounding box is
aggregated from its four children node; and the two corners
pmin and pmax of the bounding box are stored in a texture.

Following this step, we build a fixed-order traversal link as
in [CHCH06]. Specifically, a hit map and miss map are con-
structed which indicate where the ray should go when it hits
or misses the current node. When traversing a ray through
the BVH, it is tested against the bounding box at each node.
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Figure 4: Comparing the rendering results with and without
texture filtering. Note the differences in aliasing artifacts.

If the ray hits the volume, it will follow the traversal order
to the next node in the sequence, until it reaches a leaf node,
where the ray will be tested against the actual triangles. If,
on the other hand, the ray misses the current node, then the
next node to visit is indicated by the miss map.

Geometry Image LODs Geometry images impose natu-
ral LOD structures. At each node in the BVH, we simply
take the reduced pixels to form an approximated geometry
at that level. For example, if the original geometry image
is at 512× 512 resolution, then the finest level LOD has
512×512×2 triangles, and the next level has 256×256×2
triangles, by skipping every other pixel in the rows and
columns of the geometry image. The level following that has
128×128×2 triangles, and so on. Each level reduces the tri-
angle count by 4. The approximate geometry is used for ray
tracing whenever the LOD criteria is met.

Rendering Diffuse Objects The first step in our render-
ing algorithm is to shade diffuse objects. This can be done
by shadow mapping for small light sources. As we focus
more on environment lighting, it is actually non-trivial to
compute accurate, shadowed direct illumination in real-time.
To produce convincing shading effects, we make use of un-
shadowed, prefiltered environment maps such as [RH01],
and combine them with ambient occlusion maps to produce
global shadowing effects. Ideally we could also use our ray
tracer to keep tracing rays upon secondary reflections, but
this would significantly increase the computation costs. At
run-time, we compute and store the radiance of diffuse ob-
jects together with their geometry image. This allows us to
quickly obtain the direct lighting value from diffuse objects
without the need for further ray tracing. Note that this is
analogous to use caching schemes, such as irradiance cache,
to reduce the computation cost of global illumination.

To compute the diffuse radiance, we take each geometry
image with its ambient occlusion map as input to a frag-
ment shader. We use the surface normal of each geometry
image pixel to index into a prefiltered irradiance environ-
ment map and obtain an irradiance value. This value is then
multiplied with the diffuse reflectance and ambient occlu-
sion color, and the result is output to a target texture. The tar-

Figure 5: A cathedral facade on top of a glossy mirror ren-
dered at 25 fps with 160 reflection ray samples. (a) and
(b) show how glossy reflections change with respect to the
viewing angle. (c) and (d) show how how glossy reflections
change as we rotate the facade towards the mirror.

get texture will be bound to the GPU shader in the ray tracing
pass for computing glossy reflections. We enable hardware
built Mipmaps for this texture to achieve texturing filtering
described in Section 3.4.

Ray Tracing We use hardware rasterization to generate
primary pixels for all glossy objects, and bind a fragment
shader to compute the final results. The first step in the
shader is to generate sampled reflection directions. Similar
to [CK07], we use a 2D Hamersley sequence, which has ex-
cellent low discrepancy properties. We then sample reflected
directions according to Eq 4. Due to importance sampling,
many directions will be distributed around the principle re-
flection direction ~R.

With our adaptive LOD control enabled, the ray tracing
step is implemented as follows: when a ray successfully in-
tersects a bounding box, before moving on, we check the
solid angle subtended by the bounding box against the ray’s
solid angle, using Eq 7. If the check fails, we keep travers-
ing the BVH without any change. If the check succeeds, we
will treat the current node as a leaf node and stop the traver-
sal further down the node. Instead, we use the approximate
geometry represented by the current node to perform an in-
tersection test. The next node that the ray should traverse to
will follow the miss link, independent of whether the ray in-
tersects the approximate geometry or not. When the traversal
is completed, the intersection point with the closest distance
along the ray will be returned.

Mipmap Texture Filtering If the ray fails to intersect any
scene geometry, we use the ray’s direction to index into the
environment map and return the radiance contribution. If, on
the other hand, an intersection point is found, we use the
Mipmap level selected by Eq 9 to index into the radiance
texture of the diffuse objects and obtain an average radiance
value. In Figure 4 we compare the rendering results with and
without Mipmap filtering. As can be seen, enabling Mipmap
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Figure 6: A glossy teapot reflecting several diffuse objects rendered at 3.45 fps. Note the change in glossy reflections as we
move the teapot around the scene.

Adjust Number of Samples Adjust LOD Control (α)
Scene G.I. Size Triangles 20 40 60 10 3 1
Facade N/A N/A 185.11 fps 92.55 fps 45.58 fps N/A N/A N/A
Gargoyle + teapot 64x64 8K 11.29 fps 5.91 fps 3.76 fps 7.89 fps 6.4 fps 5.91 fps
Gargoyle + plane 256x256 128K 6.45 fps 2.91 fps 1.87 fps 6.44 fps 4.23 fps 2.91 fps
Complex 32x32x4(objects) 8K 7.11 fps 3.45 fps 2.29 fps 3.74 fps 3.61 fps 3.45 fps

Figure 7: Performance profiles of our algorithm. From left to right, the columns present the geometry image size, triangle count,
rendering frame rates by adjusting the number of samples, and adjusting the LOD control parameter α.

filtering effectively reduces aliasing artifacts and produces
smooth rendering results.

4. Results and Discussion

Our algorithm is implemented using DirectX 9.0c with
Shader Model 3.0. All experiments are recorded on a PC
with 2.13 Ghz Intel Core2 Duo CPU, 2GB memory, and an
NVidia 8800 GTX graphics card. Rendering frame rates are
reported as the total frame rates at 512×512 image resolu-
tion for the entire pipeline. Since the step to shade diffuse
objects is very fast, the rendering cost is dominated by the
glossy reflection shading.

Table 7 summarizes the performance data. Our algorithm
performs computation in image-space, therefore the render-
ing cost scales linearly with the total number of pixels cov-
ered by glossy objects. In addition, adjusting the LOD con-
trol parameter α changes the frame rates: lowering α reduces
the effect of LOD control, thus reducing the frame rates as
well. When α is zero, the LOD control is turned off, and the
algorithm falls back to [CHCH06].

Dynamic Glossy Reflection Effects In Figure 5, we show a
cathedral facade rendered on top of a glossy mirror that has a
Phong BRDF with n = 1000. We sample 160 rays per pixel,
and the scene is rendered at 25 fps. Note that the blurriness
of the reflections changes in accordance with the relative dis-
tance between the two objects. It also changes as the viewing
direction moves towards the grazing angle, as shown in Fig-

ure 5 (a) and (b). As the object is moved closer to the mirror,
the reflections become sharper as show in (c) and (d).

We allow the users to dynamically change the BRDF pa-
rameters at run-time. In Figure 8 (a)-(c), we render the re-
flections of a gargoyle model on a glossy teapot with chang-
ing Phong exponent parameter n. The gargoyle model is
a 64×64 geometry. We sample 40 rays per pixel and use
α = 1 for the LOD control. This scene is rendered at 5.91
fps at 512×512 resolution. In Figure 8 (d)-(f), we gradually
move the gargoyle model away from the teapot, and observe
the change in reflection blurriness. In Figure 6, we show a
more complex scene with multiple diffuse objects, each rep-
resented by a 32×32 geometry image. This scene is rendered
at 3.45 fps.

We can also render various per-pixel shading effects such
as spatially varying BRDF parameters modulated by a tex-
ture map on the fly. In Figure 1, the intensity value of a "PG
08" texture map is used to modulate the Phong exponent pa-
rameter n. Note the per-pixel reflection effects. The textures
applied in the two images are inverted, therefore in (a) the
area covered by the sign is more specular while in (b) it is
more blurry. Since we compute the BRDF sampling on the
fly, we can manipulate the spatially varying BRDF parame-
ters in real-time at no additional cost. Complex BRDFs can
also be incorporated as long as their importance sampling
functions are known.

Aliasing Artifacts When the number of sample rays is in-
sufficient, the glossy reflections are subject to aliasing arti-
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Figure 8: This gargoyle model reflected on a glossy teapot is rendered at 5.97 fps. In (a)-(c), we dynamically change the
sharpness of the BRDF applied on the teapot; in (d)-(f), we move the gargoyle model farther away from the teapot. Note the
change of blurriness in the reflected images.

Res. LOD off α = 1 α = 3 α = 10 Speedup
1024 2.45 3.04 3.98 5.37 2.2
512 2.86 3.5 4.81 6.55 2.3
256 3.61 4.04 5.92 8.6 2.4
128 4.33 4.55 6.03 8.63 2.0
64 6.16 5.92 6.6 8.72 -
32 8.55 7.99 8.21 9.26 -

Figure 9: A comparison of rendering fps (gargoyle + plane
with 30 samples) by varying the geometry image size as well
as the LOD control parameter α. Our algorithm achieves
2∼3 times speedup over [CHCH06]. By applying adaptive
LOD control, the decrease in rendering performance is less
sensitive to the increase in geometry image size.

facts. In this case, our Mipmap based texture filtering (Sec-
tion 3.4) is effective at reducing the aliasing artifacts. Fig-
ure 4 provides a comparison by turning on and off texture
filtering. Observe the differences in the rendered results.

The aliasing artifacts are more severe near the silhouettes
on the reflected images, where the ray cone partially inter-
sects with the foreground and partially with the background
environment. In this case, the texture filtering alone does not

help much, and we need to increase the ray samples to im-
prove the accuracy. Figure 10 (a)-(c) provide a comparison
by changing the number of sampled rays. Note as we use
more samples, the rendered image gradually converges to
the reference image shown on the left of the figure; at the
same time, the performance decreases linearly to the num-
ber of samples, which is expected.

Adaptive LOD control By applying our adaptive LOD
control, we can achieve 2∼ 3x speedup in rendering perfor-
mance while maintaining high rendering quality. The LOD
control allows early termination of rays to reduce ray tracing
cost. Figure 10 (d)-(f) provides a set of experiments. Using
a larger α value, we can avoid tracing excessive rays and
improve the frame rates. While this makes the intersection
tests less accurate, the rendering quality is still quite high
compared to the reference. Our parameters are typically set
as follows: when the Phong BRDF is very sharp (n > 3000),
we use 20 rays per pixel and set α = 3; otherwise we use 40
rays and set α = 10.

In [CHCH06], the geometry image resolution is a key fac-
tor affecting the ray tracing performance. A small geometry
image contains less triangles, thus the ray tracing speed is
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Figure 10: Close-up view of the gargoyle scene. The left image shows a reference image computed with sufficient samples until
the image converges. In (a)-(c), we fix the LOD parameter α to 1 and increase the number of samples per pixel; in (d)-(f) we fix
the number of rays to 40 while decreasing α. Compare the rendering quality and note the change in performance.

high but the reflections are at a very course resolution. A
large geometry image contains more triangles, thus suffers
from greatly reduced ray tracing speed. By using adaptive
LOD control, our algorithm is less sensitive to the geometry
image resolution. Here our solid angle criteria is used to con-
trol the maximum depth of traversal as a ray is traced through
the BVH. Even when the geometry image is at a very high
resolution, our algorithm can quickly eliminates the traver-
sal of rays at unnecessarily deep levels, saving computation
while maintaining accuracy. Although the ray tracing cost
still increases as the size of the geometry image increases,
the growth is strongly sublinear. As shown in Table 9, when
LOD control is turned off (equivalent to [CHCH06]), the
performance using a 32×32 geometry image is about 3.5
times that of a 1024× 1024 one; when LOD is turned on
with α = 10, the ratio decreases to 1.7.

We note that when the geometry image is small, such as
32×32, turning on LOD control with a small α value (e.g. 1)
actually produces slightly worse performance than turning it
off. This is due to the overhead by applying the LOD control,
which will be amortized as the model becomes bigger or the
α value increases.

5. Limitations and Future Work

To summarize, we have presented a GPU-based algorithm
for simulating dynamic glossy reflections in real-time. Our
solution combines a fast GPU ray tracer with adaptive

LOD control and hardware texture filtering, achieving 2∼3x
speedup over the base ray tracer [CHCH06] that does not
apply LOD control.

Our current algorithm is limited in several ways. First, our
particular ray tracing implementation limits us to geometry
image models and the BVH acceleration structure. It is pos-
sible to extend the work to more general representations and
acceleration structures such as kd-tree. This would require
providing a reasonable estimate of the solid angle and an
approximate intersecting geometry at each node in the ray
tracing hierarchy. We believe this is possible and would like
to explore various options in future work.

Second, our algorithm currently requires a scene model
to be classified as either a diffuse or glossy object, and we
compute only one bounce of reflections from the diffuse ob-
jects to glossy objects. This disables self-reflections or trans-
fer paths that start from glossy objects. This restriction can
be alleviated by using spherical harmonics or other basis
functions to store low-frequency view-dependent informa-
tion. However, high-frequency glossy to glossy reflections
will still be challenging to simulate.

As the major bottleneck of our algorithm is the compu-
tation cost of ray tracing, we would like to incorporate sev-
eral recently published techniques into our implementation,
such as the GPU-based kd-tree construction and ray tracing
by [ZH∗08].

Finally, we would like to investigate hybrid techniques

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



X. Yu & R. Wang & J. Yu / Interactive Glossy Reflections using GPU-based Ray Tracing with Adaptive LOD

such as combining ray tracing with image-space filtering to
accelerate the computation of glossy reflections further.
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