

Image Pre-Compensation: Balancing Contrast and Ringing

Jinwei Ye¹, Sing Bing Kang², Yu Ji¹,

¹University of Delaware

²Microsoft Research

Overview

A sharp image I and a (blur) kernel KOutput: A pre-compensated image J so that JAK = I

> Applications

- Compensate for projector defocus.
- Improve visual acuity.

Naïve Solution: $J = I \ddot{A} K^{-1}$

> Previous Approaches

- Wiener filter [1], steepest descent [2], etc.
- Only effective on small blur kernels.

The Dynamic Range Problem

- J has very high dynamic range.
- Dynamic range compression (f) is needed:

$$f(J)\ddot{A}K = J_f \ddot{A}K = I_f$$

• I_f is very different from I under common tone mapping functions.

> Our Solution:

 Contrast-priority tone mapping scheme for balancing contrast and ringing.

Contrast vs. Ringing

Linear Compression Function l

$$J_{l} = l(J) = \frac{J - \min(J)}{r} \qquad \Longrightarrow K$$

$$I_{l} = \frac{J - \mu}{r}$$

where $r = \max(J) - \min(J)$, μ is a constant.

 $\zeta(I_1) = c(I_1) / c(I) = 1 / r$ Contrast loss:

Non-Linear Compression

- High frequencies non-linearly scaled.
- Contrast enhanced, but has strong ringing artifacts.

Disambiguate Contrast from Ringing

Traditional RMS contrast is not good enough:

- Measure contrast using "Equivalent Ringing Free Image" (I_{RF})
- Measure ringing as $\Gamma = |I_f I_{RF}|$:

Contrast-Priority Tone Mapping

> Tone Mapping Curve Construction

- Goal: construct tone mapping function s to produce desired contrast.
- Contrast determined by slope at histogram mode $P = (\widehat{J}_1, \widehat{J}_1)$.
- Construct "S" shape function using two Bézier segments (B^+ & B^-).

- Fix slope at *P* to maintain contrast.
- Adjust curvature ($\tau^+ \& \tau^-$) to control ringing.

Balance Contrast and Ringing

• Find function that produces similar result to I_{RF} : $O(\tau^-, \tau^+; m) = ||I_{RF}(m) - I_{S}(\tau^-, \tau^+; m)|| + \alpha^{-1}$

- Use α to balance ringing and contrast.
- Larger $\alpha \Longrightarrow$ more contrast and ringing

Results

> Projector Defocus Compensation

Grayscale Texts

Linear Compression [Zhang & Nayar '06] Improve Visual Acuity

Reading without glasses.

References:

[1] M. S. Brown, P. Song, and T.-J. Cham. Image Pre-Conditioning for Out-of-Focus Projection Blur. CVPR 2006.

[2] L. Zhang and S. K. Nayar. Projection Defocus Analysis for Scene Capture and Image Display. Siggraph 2006.