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Abstract

Mirror-type specular objects are difficult to reconstruct:
they do not possess their own appearance and the reflec-
tions from environment are view-dependent. In this paper,
we present a novel computational imaging solution for re-
constructing the mirror-type specular objects. Specifically,
we adopt a two-layer liquid crystal display (LCD) setup to
encode the illumination directions. We devise an efficient
ray coding scheme by only considering the useful rays.
To recover the mirror-type surface, we derive a normal
integration scheme under the perspective camera model.
Since the resulting surface is determined up to a scale, we
develop a single view approach to resolve the scale ambigu-
ity. To acquire the object surface as completely as possible,
we further develop a multiple-surface fusion algorithm to
combine the surfaces recovered from different viewpoints.
Both synthetic and real experiments demonstrate that our
approach is reliable on recovering small to medium scale
mirror-type objects.

1. Introduction
Recovering the 3D shape of an object is an important

problem in computer vision. Successful reconstruction can
benefit numerous applications in manufacturing, graphics
modeling, and scene understanding, etc. However, most ex-
isting methods are focused on diffuse Lambertian surfaces.
Recovering the shape of objects with complex reflectance
(e.g., specular, transparent or translucent) is still one of the
few open problems in computer vision. In this paper, we
propose a computational imaging method for recovering the
3D shape of mirror-type specular objects.

Mirror-type specular objects are difficult to reconstruct
for several reasons: 1) The appearance of mirror-type object
is determined by the environment, as shown in Fig. 1; 2)
the reflection images are view-dependent, making it difficult
to find correspondences; and 3) inter-reflections may occur
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Figure 1. Mirror-type objects “borrow” appearances from nearby
environment.

when the shape is complex. Conceptually, most previous
methods [9, 3, 39] use a continuous area illumination or
a single display to cast coded patterns onto the mirror-
type object and use a multi-view approach to resolve the
surface shape. This class of methods suffer from the “depth-
normal ambiguity” [15] because only one reference point
is available on the illumination source. The depth-normal
ambiguity is often resolved by using multiple viewpoints[4]
or assuming additional surface constraints, such as planarity
[16], smoothness [34], or integrability [37].

In this paper, we present a novel and simple computa-
tional imaging solution for reconstructing mirror-type spec-
ular objects. In particular, we adopt a two-layer liquid crys-
tal display (LCD) setup to encode the directions of emitted
light field. We optimize the illumination patterns by only
encoding the useful rays. As a result, the number of cap-
tured images is reduced. By decoding the reflection images,
the correspondences between illumination rays and camera
rays can be directly obtained, as illustrated in Fig. 2. For
accurate reconstruction, we integrate the normal field under
the realistic perspective camera projection. The resulting
surface is determined up to a scale. We demonstrate that the
scale ambiguity is resolvable in a single viewpoint using
backward ray tracing. To reconstruct the object surface as
completely as possible, we capture multiple viewpoints by



mounting the object on a rotary stage and further develop a
multiple-surface fusion algorithm to combine the surfaces
recovered from different camera views. We test our ap-
proach on both synthetic and real data and the experimental
results show that our technique is reliable on recovering
small to medium scale mirror-type objects.

In summary, our contributions include:

• Using a two-layer LCD setup as an active illumination
source to resolve the depth-normal ambiguity.

• Designing an efficient ray coding scheme by only en-
coding the useful rays.

• Developing a surface reconstruction algorithm under
perspective projection to generate complete profile of
a mirror-type object.

2. Related Work
We first briefly review image-based techniques for re-

covering highly specular and mirror-type objects. Early
approaches use image distortion to infer the shape of spec-
ular objects. Bonfort and Sturm [5] place a pattern on a
reflection target and use multiple camera views to resolve
the depth-normal ambiguity. Swaminathan et al. [35] study
the caustic distortion in mirror reflections. In [37], Tarini
et al. use the reflection pattern on a display and recover the
surface by enforcing integrability of the normal field. Ding
et al. [8] use general linear camera to model the distorted
reflection of highly specular surfaces. Jacquet et al. [17]
track the curved line images under a moving camera to
recover the normal map of near-flat mirror surfaces.

Some approaches exploit the specular highlights caused
by reflection for shape reconstruction. Ikeuchi [16] uses the
reflectance map to determine the surface normal. Sanderson
et al. [31] use an array of point light sources to generate a
dense reflectance map for computing surface normal. Nayar
et al. [26] model the specular highlight using extended
Gaussian image (EGI). Oren and Nayar [27] propose the
specular stereo to estimate mirror surface. Chen et al.
[7] recover the mesostructure of a specular surface from
the reflection of a distance point light source. Morris and
Kutulakos [25] capture per-pixel reflectance and perform
stereo matching on the reflectance map. Tunwattanapong
et al. [38] determine the surface normal from reflectance
field measurement. Roth et al. [30] use feature points in
the reflection images of distant environment, or specular
flow, to compute the geometry of specular objects. Adato
et al. [2] use dense specular flow for shape estimation.
Sankaranarayanan et al. [32] use specular flow to match
correspondences on mirror-type objects and model surface
as quadratic patches. The invariants in specular reflections
are further generalized in [33]. Godard et al. [10] use
silhouette to provide a rough reconstruction and then refine

the surface using environment map. In this work, instead
of using the distant environment light in specular flow, we
consider near-field controlled illumination.

In the seminal work of [19], Kutulakos and Steger pro-
pose a generalized light-path triangulation framework to
solve the 3D shape reconstruction problem with non-linear
light path. They determine the triangulation rays by moving
a display. In a similar vein, Liu et al. [23] translate a
calibrated pattern to establish correspondences and derive
a closed form solution for recovering the shape of specular
objects. Chari and Sturm [6] exploit radiometric informa-
tion as additional constraint. Grossberg and Nayar [12] use
a translated displays for calibrating a catadioptric camera
system. In our approach, we adopt a two-layer LCD system
as illumination source and multiplex binary codes onto the
two LCDs. Since our system has no physically movable
parts and thus is much easier to calibrate and more portable.
Liu et al. [22] propose to match for correspondences in
the frequency domain for recovering the shape of trans-
parent and specular objects. Wetzstein et al. [42, 43] use
color-coded light field probe to measure transparent objects.
Francken et al. [9] simulate a dense array of illumination
sources using a display and use structured patterns to mea-
sure the mesostructure of a surface through specular reflec-
tion. Balzer et al. [4, 3] extend the multiple light source
scheme by simulating a dense illumination array using LCD
screen and encode the illumination using structured light
patterns. Weinmann et al. [39] use a multi-view approach
to reconstruct the full 3D shape of mirror objects. Gupta
et al. [13, 14] develop optimized structured light patterns
to recover the shape of surfaces with complex reflectance.
O’Toole et al. [28] developed a structured light transport
model to separate direct/indirect light transport and recover
specular and transparent surfaces. Most recently, Matsuda
et al. [24] propose a new structured light 3D scanning
paradigm using a motion contrast sensor which is capable
of capturing challenging surfaces with high specularity.

Our work is also related to compressive light field dis-
plays that comprise multiple LCD layers [40, 41]. By using
the LCDs as light attenuator, compressive light field dis-
plays have been used for presenting glasses-free 3D content.
Lanman et al. [20] introduce polarization field displays that
use LCD layers as polarization rotator to generate dynamic
light field. In this work, we use a two-layer LCD setup as
an active illumination source to generate a dense light field
for sampling the surface normal.

3. Acquisition System
Fig. 2 shows our mirror object acquisition system. Es-

sentially, we use a two-layer LCD setup to encode the
illumination light field. The two LCD layers resemble the
two-plane parameterization (2pp) of light field [21, 11]:
each illumination ray ~r is uniquely determined by its in-
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Figure 2. An illustration of our mirror-type object acquisition
system using two-layer LCD.

tersections (i.e., [u, v] and [s, t]) with the two LCDs. A
viewing camera is positioned at the side of the two LCD
layers to capture the reflection on the mirror object surface.
We use binary code patterns to encode the illumination rays
for robust decoding. By mapping the captured reflection
images to LCD pixel indices, we can directly establish a
dense set of correspondences between the illumination rays
and the camera rays that can be used to reconstruct the
object surface.

LCD Polarization Modulation. To enable binary ray
coding, we strategically configure the polarization rotation
of the two LCDs such that the pixel operation between the
two LCDs is linear in the binary field F2. In particular, we
remove the original polarizers of the two LCDs and apply a
pair of perpendicular linear polarization layers: a horizontal
polarizer is applied to the diffuse backlight and a vertical
polarizer to the front LCD, as shown in Fig. 3.

Recall that a LCD utilizes the polarization modulation
properties of liquid crystal to form images: the display im-
age appears white when the light is twisted 90◦ by the liquid
crystal, otherwise black. In our two-layer LCD, consider
a light ray ~r = [u, v, s, t] emitted from the unpolarized
backlight. After passing through the first polarization layer,
the ray becomes horizontally polarized. In order to pass the
second vertical polarization layer and become visible, the
ray needs to be twisted once (i.e., polarization rotates 90◦)
by the two liquid crystal layers. When the ray is untwisted
or twisted twice (i.e., polarization rotates 180◦), it would
be blocked and not visible. This resembles the logical
exclusive or (XOR) operator that outputs true only when
both inputs are different. Thus the observed binary code Br
for the ray ~r can be written asBr(~r) = Bf (u, v)⊕Bb(s, t),
where ⊕ is the XOR operator, Bf and Bb are the binary
code pattern on the front and back LCDs respectively.

Since XOR is linear in the binary field F2 (i.e., addition
modulo two), this enables code multiplexing on the two
LCD layers using linear combinations.
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Figure 3. The two-layer LCD setup. We place the two LCDs
between a pair of perpendicular linear polarizers such that the pixel
operation between the two LCDs is XOR in the binary field F2.

4. Efficient Ray Coding

Our goal is to design a minimum binary code book for
illumination rays such that every ray has a unique binary
code sequence.

A naı̈ve approach is to encode all the rays in the emitted
light field. If each LCD has N pixels, then the total number
of rays in the light field is N2. However, as shown in
Fig. 4, only a small subset of light field rays are reflected
by the object and finally captured by the camera. We call
the subset effective light field. Assume for each pixel on
the front LCD panel, a cone comprising ∼ k rays intersect
with the object, where k << N , then the number of rays
in the effective light field is k ×N << N2. Therefore, by
only encoding rays in the effective light field, we can reduce
the size of binary code book and save the acquisition time
as a result.

In our experiment, we first determine a bounding sphere
according to the hardware setup and pre-compute the ef-
fective light field by tracing rays from the two LCDs and
intersecting with the bounding sphere. After obtaining the
effective light field, we use an iterative code projection
approach to generate the binary code pattern for the two
LCDs.

In order to determine the code for effective rays given
the LCD code patterns, we define a code transfer matrix A
that indicates the pixel correpondences of effective rays on
the two LCDs. Specifically, A is a l × 2N matrix, where
l is the number of rays in the effective light field and N is
the number of display pixels in the 1D case. If the ith ray is
defined by pixel ui and si on the two displays respectively,
then in the ith row of A: A(i, ui) = 1 and A(i,N + si) =
1 (elsewhere are zeros). Given the composite binary code
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Figure 4. A small subset of the emitting light field intersect with
the bounding sphere that encloses the object. We only consider the
effective light field for efficient ray coding.

sequence matrix X for the two LCDs, the resulting binary
code book R for the effective rays is given as

R = AX (1)

whereX is an 2N×M binary matrix which indicates theM
sets of binary code patterns displayed on the two LCDs and
R is an l ×M binary matrix for the ray codes. Please note
that the linearity of the XOR operation enables this matrix
multiplication representation.

We therefore set out to find X such that R has unique
row vectors, i.e., each ray will receive a unique (row) code
vector. We start from a known solution X0 with dimension
2N ×M0 such that R0 has unique rows. One example of

the known solution is the Gray code, X0 =

[
G 0
0 G

]
.

However, the Gray code is redundant for a reduced set of
rays. In order to reduce the number of code sets, we apply a
code projection matrix P with dimention M0 ×Mp (where
Mp < M0) on Eqn. 1: R0P = A(X0P ). If the rows of
R = R0P are unique, then X = X0P is a new solution.

Note that right multiplying corresponds to mixing
columns of X . Therefore, this code projection process can
be interpreted as multiplexing binary patterns on the two
LCDs corresponding to different bit planes. Different from
conventional code multiplexing (e.g., Hadamard multiplex-
ing) that uses linear combination over real numbers R, here
we use binary addition (i.e. XOR), or linear combination
over the binary field F2.

Brute force search of the projection matrix P is compu-
tationally expensive. In our solution, we break down the
projection into elementary projections along vectors. The
projection vectors are chosen to make sure that after each
projection, each ray will continue to receive a unique code.
We repeat this process until the code projection space is
null. We demonstrate the existence of the code projection
matrix and an optimal selection algorithm in the Appendix.
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Figure 5. Perspective camera projection result in non-uniform
samples in the world coordinate (x, y). Simply integrating the sur-
face normal field under orthographic camera assumption results in
large error. In contrast, our proposed integration scheme produces
reliable reconstruction.

5. Surface Reconstruction
After decoding the captured images, we obtain the dis-

play pixel index maps for each reflection region. We
compute the directions of incident illumination rays ~rin
by connecting the indices of corresponding pixels on the
two LCDs. The reflected camera rays ~rre are given by the
camera calibration. Finally, we compute the surface normal
~n by taking the half-way vector of ~rin and ~rre:

~n =
~rin + ~rre
||~rin + ~rre||

(2)

Theoretically, we can also obtain the 3D position of the
surface point by intersecting the incident rays and reflected
rays. However, due to the large display pixel size and
short distance in between the two LCDs, the intersection
points are very sensitive to noise (similar to triangulation in
multi-view stereo) and the resulting surface is prone to large
errors. We have therefore opted to recover the surface by
normal integration for robust and accurate reconstruction.

For simplicity, most existing methods assume the or-
thographic camera model and directly integrate the normal
field using Poisson method. However, this assumption can
result in large reconstruction error due to the non-uniform
sampling caused by the perspective effect (see Fig. 5 for
a toy case example). We therefore adopt the more realis-
tic perspective camera model for accurate reconstruction.
We derive a normal integration algorithm under perspec-
tive projection. Similar to perspective photometric stereo
[36, 29], the initial integrated surface is determined up to a
scale. We resolve the scale ambiguity by backward ray trac-
ing. Furthermore, to obtain an object surface as completely
as possible, we develop a joint optimization algorithm to
merge surfaces from multiple viewpoints.

5.1. Normal Integration under Perspective Camera

Assume the origin is at the camera center of projection
(CoP) and the focal length is f . Let (ξ, η) be the image



Camera

Varying Scale
Factor α

CameraBack LCD

Front LCD

Camera

Ground Turth
Surface

Back LCD

Front LCD

0 100 200 300 400 500 600 700
1

10

100

1000

Scale Factor α

W
e

ig
h

te
d

 P
ix

e
l 
D

if
fe

re
n

c
e

α∗

(a) (b) (c) (d)

Figure 6. Single view scale factor estimation using backward ray tracing. (a) We search through a range of scale factors for an integrated
surface; (b) We assume the measured display indices corresponds the surface with correct scale; (c) For each scale factor, rays are traced
from the viewing camera, reflected by the mirror surface, and intersect with the two LCDs. We compare the LCD intersections with the
measured indices; (d) An example curve of the objective function. The optimal scale factor corresponds to the one with minimum weighted
display pixel error.

coordinates on the sensor plane and (x, y, z) be the world
coordinates. For each image pixel (ξ, η), we have the mea-
sured normal ~n = (n1, n2, n3). Our goal is to estimate an
optimal surface that best fits the given normal field sampled
at the image coordinates. Traditional approach assumes
orthographic camera and obtains gradients from normals
using equations zx = −n1/n3, zy = −n2/n3 and solve
the optimal surface using Poisson Equation solver. In our
case, however, due to the perspective projection, the surface
samples in world coordinates (x, y, z) are not linear relative
to the image coordinates (ξ, η). Therefore, the Poisson
method cannot be applied directly. To integrate the surface,
we first transform the surface gradients (zx, zy) into image
coordinates by applying the perspective projection (i.e.,
x = ξ · z/f, y = η · z/f ):

zξ =
zx
f

(z + zξ · ξ) +
zy
f
zξ · η

zη =
zx
f
zη · ξ +

zy
f

(z + zη · η)
(3)

However (zξ, zη) is not directly integrable since they are
functions of the unknown surface z itself. To eliminate z in
Eqn. 3, we substitute z with a new variable t = ln z. By
applying the chain rule, we have

tξ =
zx

f − zxξ − zyη

tη =
zy

f − zxξ − zyη

(4)

Then (tξ, tη) can be integrated using standard Poisson
method. The integration results in t = t0 + c for some
arbitrary constant c. Substituting t with z, we have z =
α · et0 , where α = ec is a multiplicative arbitrary constant
that indicates the scale of the surface.

In the case of the orthographic projection, the additive
integration constant c manifests as an unknown translation

along the camera axis, which is usually not necessary be-
cause in most applications, the goal is not absolute depth but
the 3D model of the object. In the case of the perspective
camera, this constant appears, through exponentiation, as
an unknown multiplicative constant α which can be consid-
ered as the scale factor of the object and is critical to the
reconstruction.

5.2. Resolving Scale Ambiguity in Single View

In order to determine the scale factor, a naı̈ve approach
is to use triangulation points to fit the integrated surface.
However, the triangulation points are not reliable and pro-
duce large errors in the scale factors. One underlying reason
is that the display pixel size is relatively big (e.g., 0.179mm
in our case) and result in large uncertainty in the display
rays. Since the camera pixel size is much smaller (e.g.,
0.0043mm), we consider the camera rays reliable. Thus
we back-trace rays from the camera and use the decoded
display pixel indices as prior to determine the scale factor
with a maximum likelihood method.

Specifically, we first integrate the surface using the algo-
rithm described in Section 5.1 and re-compute the normal
field on the integrated surface for backward ray tracing.
As shown in Fig. 6, we search through a range of scale
factors. For each scale factor α, we trace rays from camera
pixels in the reflection regions and compute the reflected
rays to intersect with the two LCDs. Given the measured
LCD indices as prior, we compute the display pixel errors
to determine α. Due to the noise in light transport, the
decoded LCD indices are subject to errors that are related
to the object geometry and LCD distance (e.g., the back
LCD panel tend to have larger error than the front one),
we then use the inverse of the standard deviations of the
display index maps in a small neighborhood as weights
for balancing the index errors. Therefore, our objective
function is formulated as:
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points by refining the scale factors.

α∗ = arg min
α

∑
i∈R

((
ûi − ui(α)

σxi,f
)2 + (

v̂i − vi(α)

σyi,f
)2

+ (
ŝi − si(α)

σxi,b
)2 + (

t̂i − ti(α)

σyi,b
)2)

(5)

where i is the camera pixel index in the reflection re-
gion R; (ûi, v̂i) and (ŝi, t̂i) are the measured display
pixel indices for the front and back LCDs respectively;
(ui(α), vi(α)) and (si(α), ti(α)) are the intersection points
on the front and back LCDs for the scale factor α; and
σxi,f , σ

y
i,f , σ

x
i,b, σ

y
i,b are the standard deviations at pixel i for

horizontal/vertical index maps of the front and back LCD
respectively.

The scale factor is solved by minimizing the objective
function. We use the golden section search to solve the
problem. This objective function corresponds to the as-
sumption that the display pixel error distribution is Gaussian
and the global minimum of the error occurs at maximum
likelihood of α.

5.3. Multiple-View Fusion

To reconstruct the object surface as completely as pos-
sible, we rotate and capture the object to acquire multiple
surface patches and then fuse the different views by solving
a joint optimization problem. As shown in Fig. 8, the direct
fusion using the single view scale factors has artifacts of
misalignment due to slight errors in the scale factors. We
therefore refine the initial scale factors when multiple views
of the surface are available, as shown in Fig. 7

Specifically, in each view, by applying the initial scale
factor α(0)

Ω estimated by single view backward ray tracing,
we have a disjoint union of surfaces Ω that receive LCD
reflections {α(0)

Ω WΩ} in the camera coordinate system. In
order to compare between different views, the scaled sur-
faces must be brought together into one common coordinate
system, or the world coordinate. By applying the rotation

View 1 View 2 View 3

Mirror
Object Multi-View

Fusion Result
Single View 

Combined Result

Figure 8. Merging surfaces from different views. Directly using
the initial single view scale factors results in artifacts of misalign-
ment.

and translation matrix, we have the disjoint union of sur-
faces in the world coordinate: {R−1(α

(0)
Ω WΩT )}.

We then combine multiple camera views by minimizing
the differences between overlapped scaled surfaces. We
measure the difference in both position and angle. Hence
the objective function for matching a surface ω from view i
and surface ω′ from view j can be written as:

ε(αω, αω′) = dC0(R−1
i (αcWω − Ti), R

−1
j (αω′Wω′ − Tj))

+dC1(R−1
i (αωWω − Ti), R

−1
j (αω′Wω′ − Tj))

(6)

where dC0 measures topological closeness between the two
surfaces (in mm), and dC1 measures closeness in the tangent
space of the two surfaces (in degrees).

Fig. 8 illustrates an example of merging different views
using the proposed algorithm. As shown in the figure, the
combined point cloud using the initial scale factor estimated
by the single view has artifacts (e.g., offsets between differ-
ent views). By using the multiview refinement, the surfaces
from multiple views align well.

6. Experiments
6.1. Synthetic data Simulation

We first apply our method on synthetic data to verify its
accuracy. In the simulation, we set up the two-layer LCD
with resolution 1920× 1080. The display size is 38.4cm×
21.6cm and the simulated display pixel size is 0.02cm. The
two-layer LCD emulates the setup in our real experiment.
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Figure 9. Simulation result on a “dolphin” model.

We place the mirror object model 5.2cm and render the
reflection image using Pov-ray (http://www.povray.org/).
We use a bounding sphere with diameter 2.5cm to enclose
the object ∼ 2cm. Less than 1% of the full light field
intersect with the bounding sphere. We only encode the
effective light field and generate binary patterns for the two
LCDs. To acquire complete surface coverage, we rotate the
camera vertically at ±45◦ and horizontally at ±30◦. We
first integrate the surface in each camera view using our
integration scheme under perspective projection and then
estimate the initial scale factor using backward ray tracing.
Finally, we apply the joint optimization algorithm to com-
bine surfaces from multiple viewpoints. The reconstructed
point cloud and the reconstruction error map are shown
in Fig. 9. We also show the reconstruction result using
direct ray triangulation. Due the large display pixel size, the
recovered point cloud using triangulation is very noisy and
inaccurate, where the average error is 0.2cm. In contrast,
with average error 0.005cm, the normal integration result is
much more accurate.

6.2. Real Scene Experiment

We also perform real experiments to validate our ap-
proach. We build our two-layer LCD system using the liq-
uid cyrstal panels disassembled from two commodity 15.6 ′′

Viewing
Camera

Two-Layer LCD

Aux
Camera

Mirror Object

Rotary Stage

Figure 10. Our experimental setup with a two-layer LCD.

displays (ASUS MB168B+). Each panel has resolution
1920 × 1080 and the pixel size is 0.179mm. The distance
between the two LCDs is 30mm. The larger the distance,
the more accurate the incident rays are. However, the light
throughput decreases. Our experimental setup is shown in
Fig. 10. We place the mirror-type object on a rotary stage
to acquire complete coverage of the surface. We use a
commodity DSLR camera (Canon T3i with 50mm f /1.8
lens) and place the camera at the right side of the display
to capture the display reflection on the mirror object. To
reduce out-of-focus blur, we use small aperture (f /22) and
long exposure for extended depth of field. To reduce noise,
we also capture the inverse patterns. Due to the property
of XOR operation, we only invert the patterns on one LCD
layer for inverse patterns.

Calibration. We calibrate the viewing camera using
the Matlab calibration toolbox [1]. Since the display is
not directly visible in the viewing camera, calibration of
the two-layer LCD is more challenging. To calibrate the
LCDs, we use a second auxiliary camera pointing at the
display. We first calibrate the LCDs relative to the auxiliary
camera. Then we correlate calibrations of the viewing
camera and the auxiliary camera using a checkerboard that
is in common view to both cameras.

We test on two real mirror-type objects (e.g., “Eiffel
Tower” and “Big Ben”). The size of the mirror objects
is ∼ 30mm × 30mm × 100mm and we place the object
at ∼ 100mm in front of the display. We use a bounding
sphere with diameter 150mm and less than 2% of the light
field are effective. We generate the binary pattern for each
LCD by code multiplexing in the binary field. Our efficient
coding scheme results in 34 code patterns to be captured
for each view, while the Gray code needs take 44 shots
(2 × (dlog2 1920e + dlog2 1080e)). To capture a complete
profile, we rotate the object at 20◦ steps to obtain sufficient
coverage of the object. To merge surfaces from multiple
views, we use a 3 × 3 checkerboard rigidly attached to the



object to estimate the world transformation (rotation and
translation) for each viewpoint. Since the small checker-
board produces large extrinsic calibration error, after the
multi-view scale factor refinement, we use the iterative
closest point (ICP) algorithm to update the world trans-
formation matrices and use the new world transformation
to further refine the scale factor. We repeat this process
until convergence. Our reconstruction results are shown
in Fig. 11. Compared with the “Eiffel Tower”, the “Big
Ben” is a more challenging case because it has more disjoint
surfaces in each view. The multi-view joint optimization
takes longer computational time. The top of Big Ben is
truncated in our reconstruction due to out of the camera’s
field of view. There are also some artifacts on the clock due
to self-occlusion.

7. Conclusions and Discussions

In this paper, we have presented a two-layer LCD setup
as active illumination source for recovering the shape of
mirror-type objects. We have further derived a normal
integration scheme under perspective camera projection. To
resolve the scale ambiguity, we have developed single view
approach for estimating the initial scale factor and a multi-
view joint optimization approach to refine the scale fac-
tors. Finally, we have demonstrated the effectiveness of our
approach using both synthetic and real-world experiments.
Our solution provides reliable and accurate 3D reconstruc-
tion of small to medium scale mirror-type objects.

One limitation of our approach is that the reflection
image only covers limited areas on the object surface and
we need to rotate the object with fine steps to acquire full
coverage. One can use a curved display to surround the
object to obtain larger coverage of reflection. On the algo-
rithm side, if the initial scale factor from the single view has
large error, the search in the multi-view joint optimization
may converge slowly. We can improve the efficiency of the
search by considering additional surface constraints (e.g.,
curvature and smoothness). Since the mirror reflection
changes light polarization, one possible future direction is
to use polarized display and camera [18] to increase the
reconstruction accuracy and reduce acquisition time.
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Appendix:
Existence of Code Projection Matrix P

If v is a row vector in FM2 , the projection matrix Pv

along v is an M × (M −1) binary matrix satisfying vPv =
0. That is, the null space ker(Pv) = {0,v} and only the
vector v is annihilated. In order for the rows ofR0 to remain
unique, all we need to do is to make sure that none of the
pairwise differences of rows of R0 gets annihilated by Pv.
Let D(R) be the set of pairwise differences of rows of a
code matrix R:

D(R) = {R(i, :)⊕R(j, :)|1 ≤ i < j ≤ l} (7)

where R(i, :) denotes the ith row of matrix R. By the
assumption that R has unique rows, we have 0 /∈ D(R).
Note that over F2, difference is the same as sum ⊕. Fig. 12
illustrates the geometry of the projection.

Figure 12. Projection in code space.

Also, we define the complement set:

D̃(R) = FM2 \ ({0} ∪D(R)) (8)

Then it is clear that any choice of v ∈ D̃(R) will give
a projection matrix Pv that preserves unique rows of R. If
D̃(R) = ∅, then no such projection is possible. On the other
hand, if D̃(R) 6= ∅, it is typically the case that D̃(R) will
contain many vectors.

Optimal Selection of Code Projection Matrix P

Intuitively, we should choose a projection vector that
will maximize the chance of another projection. In other
words, we would like to choose a v such that D̃(RPv) 6= ∅,
or better still, such that D̃(RPv) is a large set. This is
formalized by introducing the notion of Code Sparsity of
X:

ψ(X;A) =
D̃(AX)

2M − 1
× 100% (9)

whereM is the number of columns ofX . A locally optimal
projection is a projection matrix Pv∗ given by a projection

vector v∗ satisfying

v∗ = arg maxv∈D̃(AX)ψ(XPv;A) (10)

When D̃(AX) is a large set, searching through vectors
in it can be very time consuming even for an offline calcula-
tion. We implement an approximation to the locally optimal
projection by applying a heuristic filter F on D̃(AX) to
reduce the size of the search set:

v̂ = arg maxv∈F(D̃(AX))ψ(XPv;A) (11)

Let ‖v‖H denote the Hamming weight of a binary vec-
tor, i.e., the number of 1’s in the vector. We define the
Minimum Weight Filter, FMinWt, by

FMinWt(R) =

{
v ∈ R | ‖v‖H = min

w∈R
‖w‖H

}
(12)

Empirical evidence suggests that performance of the
Minimum Weight Filter is very close to the true local
optimum. It has the additional benefit that the resulting
projection minimally mixes the bit planes and therefore
preserves some desirable error-deterrent properties of the
Gray code.

Performance of the Efficient Ray Coding

We apply the efficient ray coding algorithm to an exam-
ple configuration of the two-layer LCD system, shown in
Figure 13.

Figure 13. An example configuration of the two LCD system with
a bounding volume.

Both LCDs have the same pixel resolution N = 1080
and pixel pitch ‖ub‖ = ‖uf‖ = 0.179 mm. The separation
between the LCD layers is d = 25 mm while the bound-
ing sphere is positioned relative to the front LCD with a
vertical offset of D = 95 mm and a horizontal offset of



ξ = 45.82 mm. We vary the radius of the bounding sphere ρ
to study the effect of sparsity of the light field on the coding.

Table 1 shows the efficiency of the optimized code pat-
terns relative to the size of the bounding volume and the
theoretical bound dlog2 le, where l is the number of useful
rays that reach the bounding volume. As a reference, Gray
code solution requires 2dlog2 1080e = 22 shots.

ρ(mm) l dlog2 le # projections # shots

38.1 112080 17 4 18
31.75 91572 17 5 17
25.4 72118 17 5 17

19.05 53444 16 5 17
12.7 35320 16 6 16
6.35 17594 15 7 15

Table 1. Performance of code patterns relative to the size of the
bounding volume. Boldfaced rows indicate that the theoretical
bound has been achieved.

By fixing ρ = 31.75mm, we show an example code
matrix X for the two-layer LCD in Fig 14.

Figure 14. Example two-layer LCD code patterns (X).

It can be seen that while the Gray code patterns have
been modified, the high spatial frequency bit patterns re-
main intact, which is due to the Minimum Weight Filter
selection algorithm for projection vectors.


