Let G = (,
) be a graph on vertex set
= {1,2,…,n} and edge set
⊂
×
.
We assume G is simple and undirected; that is for any vertices i and j we have
(i,i)
and (i,j) ∈
if and only if (j,i) ∈
(note that this implies that |
|, the
number of elements in
, is twice the total number of edges in G). For each i ∈
,
let ci denote the cost and wi > 0 denote the weight of vertex i. If
⊂
,
then
denote the total cost and weight of the vertices in , respectively.
If the vertices are partitioned into three disjoint sets
,
, and
, then
separates
and
if there is no edge (i,j) ∈
with i ∈
and j ∈
. The Vertex
Separator Problem (VSP) is to minimize the cost of
while requiring that
and
have approximately the same weight. We formally state the VSP as follows:
Graph | Best known VSP [MLBP] |
bcspwr09 | 7 |
bcsstk17 | 198 |
c-38 | 14 |
c-43 | 84 |
ca-HepPh | 677 |
crystm01 | 65 |
delaunay_n13 | 68 |
email-Enron | 690 |
email-EuAll | 10 |
Erdos992 | 88 |
fxm3_6 | 47 |
G42 | 472 |
jagmesh7 | 14 |
lshp3466 | 57 |
minnesota | 17 |
nasa4704 | 172 |
net25 | 510 |
netscience | 0 |
netz4504 | 17 |
oregon2_010505 | 59 |
p2p-Gnutella04 | 2062 |
p2p-Gnutella05 | 1642 |
p2p-Gnutella06 | 1375 |
p2p-Gnutella08 | 959 |
p2p-Gnutella09 | 1211 |
p2p-Gnutella24 | 3062 |
p2p-Gnutella25 | 2543 |
p2p-Gnutella30 | 3860 |
p2p-Gnutella31 | 5873 |
sherman1 | 28 |
soc-Epinions1 | 3061 |
sstmodel | 22 |
USpowerGrid | 8 |
barth5_1Ksep_50in_5Kout | 987 |
bcsstk30_500sep_10in_1Kout | 376 |
befref_fxm_2_4_air02 | 932 |
bump2_e18_aa01_model1_crew1 | 5988 |
c-30_data_data | 464 |
c-60_data_cti_cs4 | 2795 |
data_and_seymourl | 1137 |
finan512_scagr7-2c_rlfddd | 5921 |
mod2_pgp2_slptsk | 7934 |
model1_crew1_cr42_south31 | 2059 |
msc10848_300sep_100in_1Kout | 279 |
p0291_seymourl_iiasa | 970 |
sctap1-2b_and_seymourl | 4010 |
south31_slptsk | 2327 |
vibrobox_scagr7-2c_rlfddd | 2821 |
web-NotreDame | 272 |
web-Stanford | 124 |
wiki-Vote | 762 |
yeast | 180 |